
Massively Parallel Quadratic Programming Solvers with

Applications in Mechanics

Ing. Václav Hapla

Doctoral Thesis

Department of Applied Mathematics

Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava

Ostrava 2016

Abstract

This thesis focuses on practical solution of large-scale contact problems of structure mechanics

by means of a derived quadratic programming (QP) formulation. An approach proposed by

professor Dostál, combining a FETI-type non-overlapping domain decomposition method, the

SMALBE algorithm based on augmented Lagrangians, and the MPRGP algorithm belonging to

active set methods, has been adopted. This approach enjoys theoretically supported numerical

scalability and a favourable potential for parallel scalability. The thesis consists of two parts:

Background and Implementation.

Background is devoted to rather theoretical aspects of QP and FETI, although tightly con-

nected to practical implementation. Original topics include QP transforms, implicit orthonor-

malization of equality constraints, and a minor modification of SMALBE shortening its termi-

nation phase considerably.

Second part, Implementation, deals with the massively parallel implementation of the afore-

mentioned approach within PERMON, a new set of software libraries established by the author.

The most important part, PERMON Solver Core, is formed mainly by the general-purpose QP

solver PermonQP, and its extension PermonFLLOP providing support for domain decomposi-

tion. These libraries make use of and extend PETSc, an open source software framework for

numerical computing. Performance of PERMON is demonstrated on several numerical experi-

ments.

Keywords

quadratic programming, QP, domain decomposition methods, FETI, augmented Lagrangian,

SMALBE, MPRGP, contact problems, structure mechanics, PERMON, PermonQP, Permon-

FLLOP, PETSc

Abstrakt

Tato dizertačńı práce se zaměřuje na praktické řešeńı rozsáhlých kontaktńıch úloh strukturálńı

mechaniky přes odvozenou úlohu kvadratického programováńı (QP). Přeb́ırá př́ıstup navržený

prof. Dostálem, kombinuj́ıćı nepřekrývaj́ıćı metodu rozložeńı oblasti typu FETI, algoritmus

SMALBE založený na rozš́ı̌rených Lagrangiánech a algoritmus MPRGP nálež́ıćı k metodám ak-

tivńıch množin. Tento př́ıstup se těš́ı teoreticky podložené numerické škálovatelnosti a př́ıznivému

potenciálu pro paralelńı škálovatelnost. Tato práce se skládá ze dvou část́ı: Teoretické pozad́ı a

Implementace.

Teoretické pozad́ı se věnuje sṕı̌se teoretickým stránkám QP a FETI, i když těsně spjatými s

praktickou implementaćı. K originálńım témat̊um patř́ı QP transformace, implicitńı ortonormal-

izace rovnostńıch omezeńı a drobná modifikace SMALBE podstatně zkracuj́ıćı jeho ukončovaćı

fázi.

Druhá část, Implementace, je věnována masivně paralelńı implementaci výše uvedeného

př́ıstupu v rámci PERMONu, nové sady softwarových knihoven založené autorem. Nejd̊uležitěǰśı

část́ı PERMONu, tzv. Řešičové jádro (PERMON Solver Core), je tvořeno zejména QP řešičem

pro obecné použit́ı PermonQP a jeho extenźı PermonFLLOP, poskytuj́ıćı podporu pro rozložeńı

oblasti. Tyto knihovny využ́ıvaj́ı a rozšǐruj́ı PETSc, softwarový rámec pro numerické výpočty s

otevřeným kódem. Výkonnost PERMONu je demonstrována na několika numerických experi-

mentech.

Kĺıčová slova

kvadratické programováńı, QP, metody rozložeńı oblasti, FETI, rozš́ı̌rený Lagrangián, SMALBE,

MPRGP, kontaktńı úlohy, strukturálńı mechanika, PERMON, PermonQP, PermonFLLOP, PETSc

Acknowledgement

I would like to thank my supervisor and boss Tomáš Kozubek for his leadership and support;

David Horák and Martin Čermák for their friendship, collaboration, help and comments on

this thesis; Lukáš Posṕı̌sil who is currently on a long stay but had contributed significantly

to PERMON Solver Core and implemented PermonMembrane; Alexandros Markopoulos for

PermonCube and joint idea of implicit orthonormalization; and also all other fellows, especially

the members of the PERMON team, for their support and help.

I express my gratitude to Department of Applied Mathematics, Faculty of Electrical Engi-

neering and Computer Science and VSB-Technical University of Ostrava for the opportunity to

study there the most interesting field of Computational and Applied Mathematics. My thanks

go also to IT4Innovations for supporting PERMON development and allowing me to write this

thesis in tight connection with my work there.

Last but not least, I would like to thank my wife and my mother for their support and

patience during my doctoral studies and finishing this work. And thank you both my little

daughters for cheering me up!

In memory of my dear dad.

Author:

Ing. Václav Hapla

vaclav.hapla@vsb.cz

Thesis supervisor:

prof. Ing. Tomáš Kozubek, Ph.D.

tomas.kozubek@vsb.cz

Department of Applied Mathematics

Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava–Poruba

Czech Republic

http://www.am.vsb.cz

http://fei.vsb.cz

http://www.vsb.cz

i

Contents

Introduction xiii

I Background 1

1 Quadratic programming 3

1.1 General discrete optimisation problems . 4

1.2 QP problems . 4

1.3 Handling unprescribed constraints . 6

1.4 Optimality conditions, solution existence and uniqueness 6

1.5 Partially bound constrained problems . 8

1.6 KKT conditions practically . 9

1.7 Computation of Lagrange multipliers . 10

1.7.1 Computing λℓ of bound and equality constrained problems 10

1.7.2 Computing λℓ and λu of box and equality constrained QPs 11

1.7.3 Computing λE . 12

2 QP transforms 13

2.1 Inline QP notation . 13

2.2 QP transform definition . 14

2.3 Concrete QP transforms . 14

2.3.1 Box constraints elimination . 15

2.3.2 Affine space shift . 16

2.3.3 Equality constraints homogenization . 17

2.3.4 Enforcing equality constraints using penalty 18

2.3.5 Preconditioning by the orthogonal projector 21

2.3.6 Eliminating homogeneous equality constraints 23

2.3.7 Dualization . 24

2.4 Examples . 27

2.4.1 Equality constrained QP . 27

2.4.2 Bound constrained QP . 30

ii

2.4.3 Bound and equality constrained QP . 31

2.4.4 General QP . 31

3 QP algorithms 35

3.1 MPRGP algorithm . 35

3.2 SMALBE algorithm . 36

3.3 SMALBE-M with improved termination phase 38

4 TFETI DDM 45

4.1 Non-overlapping domain decomposition . 46

4.1.1 Meshing part . 46

4.1.2 Conformity conditions . 46

4.1.3 DOF numberings . 47

4.1.4 Assembly part . 47

4.1.5 Algebraic part . 47

4.2 FETI methods . 47

4.3 TFETI for linear elasticity . 48

4.4 TFETI for frictionless contact problems . 51

4.5 TFETI as a sequence of QP transforms . 52

5 Implicit orhonormalization 55

5.1 Equality constraint orhonormalization . 55

5.2 Equality constraint homogenization . 56

5.3 Preconditioning by the orthogonal projector . 57

5.4 SMALBE-M algorithm modification . 57

II Implementation 59

6 Open source software 61

6.1 Meshing . 61

6.1.1 Netgen . 61

6.1.2 TetGen . 62

6.1.3 Triangle . 62

6.1.4 ViennaMesh . 62

6.1.5 Pamgen . 63

6.2 Partitioning . 63

6.2.1 METIS . 63

6.2.2 ParMETIS . 63

6.2.3 SCOTCH . 64

iii

6.3 FEM libraries . 64

6.3.1 deal.II . 64

6.3.2 DUNE . 65

6.3.3 Elmer . 65

6.3.4 Feel++ . 65

6.3.5 FEniCS . 65

6.3.6 FreeFem++ . 66

6.3.7 Hermes . 66

6.3.8 libMesh . 66

6.3.9 MOOSE . 67

6.3.10 OOFEM . 67

6.4 Toolkits for numerical computations . 67

6.4.1 PETSc . 67

6.4.2 Trilinos . 68

6.4.3 PARALUTION . 68

6.4.4 ViennaCL . 69

6.5 Parallel sparse direct linear solvers . 69

6.5.1 MUMPS . 69

6.5.2 SuperLU . 69

6.5.3 PARDISO . 70

6.5.4 Other sparse direct solvers . 70

6.6 QP solvers . 70

6.6.1 TAO . 70

6.6.2 OOQP – object-oriented software for quadratic programming 71

6.6.3 QuadProg++ . 71

6.6.4 CGAL . 71

6.6.5 Elemental . 71

6.6.6 qpOASES . 72

6.6.7 CVXOPT – Python Software for Convex Optimization 72

6.6.8 HQP – Huge Quadratic Programming . 72

6.6.9 GALAHAD . 73

6.6.10 PENOPT . 73

6.6.11 Gurobi . 73

6.6.12 MOSEK . 74

7 PERMON toolbox 75

7.1 PermonCube and PermonMembrane . 76

7.2 PERMON Solver Core . 77

7.3 PermonFLLOP . 77

iv

7.4 PermonQP . 79

7.4.1 QP transforms . 80

7.4.2 PETSc object design . 81

7.4.3 PermonQP API . 82

7.4.4 Linear operators . 83

7.4.5 SMALXE . 84

7.4.6 General QP solver . 85

7.5 Direct solvers in PERMON Solver Core . 85

7.5.1 Local and coarse problems in TFETI . 86

7.5.2 Stiffness matrix pseudoinverse action . 87

7.5.3 Coarse problem solution . 87

8 Numerical experiments with PERMON 91

8.1 Machines . 91

8.1.1 ARCHER . 91

8.1.2 HECToR . 92

8.1.3 Salomon . 92

8.2 Evaluation of direct solvers . 92

8.2.1 Results for pseudoinverse action . 93

8.2.2 Results for coarse problem solution . 93

8.2.3 Summary . 99

8.3 Model contact problems . 99

8.3.1 Decomposition and discretization . 101

8.3.2 Solver settings . 101

8.3.3 Performance results . 102

8.4 Real world problems . 104

Conclusion 107

v

List of Tables

8.1 Performance of Kreg factorization / K† action / factorization + all actions for

varying decompositions in seconds. 93

8.2 Performance of sequential GGT factorization / (GGT)−1 action / factorization

+ all actions on the master core for varying decompositions in seconds. 95

8.3 Performance of MUMPS (M) and SuperLU DIST (S) for Strategy 1 depending

on the subcommunicator’s size for the decomposition into 8000 subdomains (in

seconds); the best variant is printed in bold. 97

8.4 Performance of MUMPS (M) and SuperLU DIST (S) for Strategy 2 depending

on the subcommunicator’s size for the decomposition into 8000 subdomains (in

seconds); the best variant is printed in bold. 97

8.5 Dimension settings for coercive and semicoercive problem with h = H/128. . . . 101

8.6 Dimension settings for cube in 3D with h = H/24. 101

8.7 The spanner problem – tolerance vs. number of iterations. Times in seconds;

n = 177, 402; m = 27, 534; d = 300; NS = 50; K† using MUMPS; (GGT)−1 using

SuperLU DIST, Strategy 1, Nr = 1. 105

8.8 Performance of PermonFLLOP TFETI for the engine problem. Times in seconds;

n = 98, 214, 558; m = 13, 395, 882; d = 30, 072; NS = 5012; K† using MUMPS;

(GGT)−1 using SuperLU DIST, Strategy 1, Nr = 16. 105

vii

List of Figures

2.1 Example of a QP transform and reconstruction function – homogenization of the

equality constraints (Section 2.3.3). 15

3.1 The issue of the late termination. 40

3.2 The issue caused by the criterion ||gP (xk,λk
E , ρ)|| < ε||b||. 40

3.3 Behaviour of ||BEx|| for the minimal number of inner steps N = 5. 41

3.4 Progress for N = 10. 41

3.5 Progress for N = 20. 42

3.6 The issue is resolved with the late update of penalty. 42

7.1 Process of solving contact problems with PERMON. 76

7.2 QP chain. 80

7.3 Example of QP transform and reconstructions of the solution – homogenization

of the equality constraints. 81

7.4 Distributed computation G = RTBT . 88

7.5 The sparsity pattern of G. 88

7.6 The sparsity pattern of GGT . 88

7.7 Scheme of (GGT)−1 implementation using Strategy 2. 90

8.1 Times for Kreg factorization (log. scale) . 94

8.2 Times for K† action (log. scale) . 94

8.3 Times for GGT factorization in seq. case (log. scale) 95

8.4 Times for (GGT)−1 action in seq. case (log. scale) 96

8.5 Times of CP preprocessing and 100 (GGT)−1 actions depending on the subcom-

municator’s size, the strategy (S1 = Strategy 1, S2 = Strategy 2), and the direct

solver for the decomposition into 8000 subdomains. 98

8.6 Times of CP preprocessing and 1000 (GGT)−1 actions depending on the subcom-

municator’s size, the strategy (S1 = Strategy 1, S2 = Strategy 2), and the direct

solver for the decomposition into 8000 subdomains. 98

8.7 Model problems: coercive (a, b) and semicoercive (c, d) scalar contact problem

of two membranes, and elastic cube with a rigid obstacle (e, f) – problem specifi-

cation (left) and solution (resulting displacements, right). 100

viii

8.8 Graphs of numerical and weak parallel scalability for the coercive (a) and semi-

coercive (b) membrane problems, and the cube problem (c) 103

8.9 The spanner benchmark – decomposition (left) and solution (resulting displace-

ments, right). 104

8.10 The car engine benchmark. 105

ix

Abbreviations

CP coarse problem

DDM domain decomposition method

DOF degree of freedom

FE finite element

FEM Finite Element Method

FETI Finite Element Tearing and Interconnecting

HPC high performance computing

KKT Karush–Kuhn–Tucker conditions

PDE partial differential equation

QP quadratic programming, quadratic programming problem, quadratic program

RHS right hand side vector

SPD symmetric positive definite

SPS symmetric positive semidefinite

xi

Symbols

R field of all real numbers

R
+ set of positive real numbers

R
+
0 set of non-negative real numbers

R
n linear space of all real-valued column vectors with n entries

R
m×n linear space of all real-valued matrices with m rows and n columns

A = [
. .
. .], b = [

.

.] matrix, vector, given entry-wise

���
(0,n), ���

(n,0) empty matrix with no rows and no columns, respectively

��� the same with obvious or unimportant size

O(m,n),o(m) zero matrix, zero column vector with specified size

O,o the same with obvious or unimportant size

I(m,m) identity matrix with specified number of rows

I the same with obvious or unimportant size

∞
(m,n) matrix with all values equal to plus infinity, with specified size

∞ the same with obvious or unimportant size

AT transpose of matrix A

A−1 inverse of matrix A, i.e. matrix satisfying AA−1 = A−1A = I

A† generalized inverse of matrix A, i.e. matrix satisfying AA†A = A

A+ Moore-Penrose pseudoinverse, i.e. matrix satisfying

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A

AL left inverse of full column rank matrix A,

AL = (ATA)−1AT , ALA = I(n,n)

AR right inverse of full row rank matrix A,

AR = AT (AAT)−1, AAR = I(m,m)

xii

I = (a, . . . , z) index set (integer tuple) I containing all integers from [a, z]

|I| number of elements in index set I

[v]i, vi i-th element of vector v

[v]I , vI subvector of v given by index set I

[A]i,j , ai,j j-th element of i-th row of matrix A

[A]I,∗ submatrix of A with rows I and all columns

[A]∗,J submatrix of A with all rows and columns J

[A]I,J , AI,J submatrix of A given by row index set I and column index set J ,

i.e. AI,J = [[A]I,∗]∗,J

z = max(x,y) element-wise maximum of vectors x and y,

i.e. vector with entries zi = max{xi, yi}

KerA kernel (nullspace) of matrix A, KerA = {x : Ax = o}

ImA image (range) of matrix A, ImA = {y : ∃x,Ax = y}

σmax(A) maximal singular value of matrix A

σmin(A) minimal singular value of matrix A

σmin(A) minimal nonzero singular value of matrix A

κ(A) (effective) condition number of matrix A, κ(A) = σmax(A)
σmin(A)

U ⊕ V = W direct sum of subspaces, U + V = W ∧ U ∩ V = {o}

where xk ∈ R
nk , 1 ≤ k ≤ N

∇xk
F (x1, . . . ,xN) gradient of F : (R

∑N
k=1 nk) 7→ R with respect to xk,

xiii

Introduction

Most problems of mechanics may be described by partial differential equations (PDEs). To be

solved with computers, they have to be discretized, e.g. with popular Finite Element Method

(FEM). We typically get large sparse linear systems of equations. However, constrained problems

such as contact problems of mechanics result in nonlinear optimization problems. Using a natural

way of adding the constraints additively to the linear system, quadratic programming problems

(QPs) arise. In presence of friction, a generalized formulation of QP has to be used. QPs also

arise in other disciplines like least-squares regression, data fitting, data mining, support vector

machines, control systems and many others.

FEM simulations with a large enough number of variables are not solvable on usual personal

computers due to memory and computational limits. Such problems can be solved only on

parallel computers. Suitable numerical methods are needed for that such as domain decomposi-

tion methods (DDM) or multigrid. DDM are natural from the user’s perspective as they solve

the original problem by decomposing (“tearing”) into smaller independent subdomain problems

which can be solved in parallel. A DDM basically constitutes a mathematical framework how

to get a correct solution, continuous across subdomain interfaces, in presence of such tearing.

Finite Element Tearing and Interconnecting (FETI) methods form a successful subclass of

DDM. They belong to non-overlapping methods and combine iterative and direct solvers. The

FETI methods allow highly accurate computations scaling up to tens of thousands of processors

and billions of unknowns. In FETI, subdomain stiffness matrices are assembled, factorized

and solved independently whereas conditions of continuity of the solution across subdomain

interfaces (gluing conditions) form separate linear equality constraints. In the specific flavour of

FETI we typically use, called Total FETI (TFETI), Dirichlet boundary conditions are enforced

by means of equality constraints, too. Hence, even in case of linear elasticity, it is advantageous

to handle the resulting problem as a special case of QP (equality constrained).

Due to limitations of commercial packages, problems often have to be adapted to be solvable.

This is an expensive process and results reflect less accurately physical phenomena. Moreover,

it takes a long time before the most recent numerical methods needed for High Performance

Computing (HPC) are implemented into such packages. These issues lead the author to establish

xiv

the PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) toolbox. It is

a collection of software libraries, uniquely combining QP algorithms and DDM. PERMON is

built on top of the well-known PETSc framework for numerical computations. Among the main

applications are contact problems of mechanics. Our PermonFLLOP package is focused on non-

overlapping DDM of the FETI type, allowing efficient and robust utilization of contemporary

parallel computers for problems with billions of unknowns. Any FEM software can be used

to generate mesh and assemble the stiffness matrices and load vectors per each subdomain

independently. Additionally, a mapping from the local to the global numbering of degrees of

freedom is needed, and non-penetration information in case of contact problems. All these

data are then passed to PermonFLLOP, which prepares auxiliary data needed in the DDM.

PermonQP is then called in the back-end to solve the resulting equality constrained problem

with additional inequality constraints in case of contact problems.

This thesis is driven by practical implementation of QP algorithms and DDM in PERMON,

particularly for massively parallel solution of contact problems of mechanics. Its theoretical

part limits itself mainly to topics needed for understanding the implementation aspects, with

no ambitions to cover all important theoretical aspects. An interested reader can find much

more complete theoretical background in the book by prof. Dostál [10] which is the most

important reference, introducing the crucial algorithms implemented in PERMON and their

solid theoretical support.

Thesis structure

Part I (Background) is devoted mainly to rather theoretical aspects, although driven by

implementation. It consists of these chapters:

Chapter 1 (Quadratic programming) briefly presents the field of mathematical opti-

mization and gets quickly to its subfield of QP with special attention paid to practical

computation of Lagrange multipliers and evaluation of Karush–Kuhn–Tucker (KKT)

optimality conditions.

Chapter 2 (QP transforms) introduces a non-standard notion of QP transform, at-

tempting to formalize transformation of a QP problem to ease its solution. After

defining the concept, several concrete instances are presented as well as several ex-

amples of their usage. This topic appears for the first time here.

Chapter 3 (QP algorithms) discusses two particular QP solvers implemented in PER-

MON, MPRGP and SMALBE-M by Dostál. A new modified version of SMALBE-M

is then presented which shortens the termination phase of SMALBE-M.

xv

Chapter 4 (TFETI DDM) introduces TFETI for linear problems, extension to contact

problems, and its reformulation by means of QP transforms.

Chapter 5 (Implicit orhonormalization) is devoted to the special topic of making

equality constraints orthonormal “for free”, a simple yet powerful new ingredient for

massively parallel TFETI for contact problems, firstly presented in this thesis.

Part II (Implementation) contains topics directly connected with the practical implementa-

tion of the concepts of Part I in PERMON.

Chapter 6 (Open source software) presents an overview of pre-existing open source

libraries, related by focus to our own PERMON software or even directly used by

PERMON.

Chapter 7 (PERMON toolbox) introduces in detail the PERMON libraries relevant

for solution of contact problems which form a practical part of the thesis.

Chapter 8 (Numerical experiments with PERMON) concludes Part II by descrip-

tion and evaluation of several numerical experiments with PERMON.

1

Part I

Background

3

CHAPTER I

Quadratic programming

Most engineering problems may be described by PDEs. To be solved with computers, they have

to be discretized, e.g. with FEM. By these means, we typically get large sparse linear systems of

equations. However, constrained problems describable by elliptic variational inequalities such as

contact problems of mechanics, describing the equilibrium of elastic bodies in mutual contact,

lead naturally to more general quadratic programming (QP) problems which will be defined

in this chapter. QP problems also arise in other disciplines like least-squares regression, data

fitting, data mining, support vector machines, control systems, and many others.

This chapter briefly introduces the field of mathematical optimization in Section 1.1 and

gets quickly to its QP subfield in Section 1.2. Section 1.4 presents Karush–Kuhn–Tucker (KKT)

optimality conditions and several useful theorems concerning existence and uniqueness of so-

lution. Facts in Sections 1.1, 1.2 and 1.4 are generally known and loosely taken from [10].

Section 1.3 introduces zero-sized matrices so that special cases of QP are handled uniformly in

Section 1.4. Section 1.5 formulates partially bound QP in order to simplify prescription of box

constraints only on a subset of variables, and shows how the optimality conditions are mod-

ified. Sections 1.6 and 1.7 present original discussions on evaluation of KKT conditions and

computation of Lagrange multipliers, respectively.

4 1 Quadratic programming

1.1

General discrete optimisation problems

A general discrete optimization problem reads

find x̄ = argmin f(x) (1.1a)

subject to hE(x) = o, (1.1b)

hI(x) ≤ o. (1.1c)

Note the ‘less than or equal’ sign (≤) is meant component-wise here and further on. The function

f in (1.1a) is called an objective function (aka cost, loss function), hE in (1.1b) is the equality

constraint function, and hI in (1.1c) is the inequality constraint function. The variable vector

x ∈ R
n is called the optimization variable of the problem. The feasible set Ω consists of all

feasible vectors, i.e. the ones satisfying the prescribed constraints (1.1),

Ω = {x ∈ R
n : hE(x) = o ∧ hI(x) ≤ o} .

The vector x̄ is called a solution of the problem (1.1), if it yields the smallest objective value

f(x̄) among all feasible vectors,

x̄ : f(x̄) = min {f(x̄) : x ∈ Ω} .

1.2

QP problems

A quadratic programming problem or quadratic program (QP) can be seen as a generalization of a

problem of solving an SPS linear system, where additional equality constraints and/or inequality

constraints may be prescribed that must be satisfied by the solution vector – the solution must

be feasible. Apparently, it may happen that no feasible vector solves the linear system on its

own, and we instead search its nearest (least-square) solution from the feasible set.

QP is at the same time a special case of the general optimization problem (1.1) where the

functions f , hE , hI are specified as follows:

• f is a quadratic convex function of the form

f(x) =
1

2
xTAx− bTx,

where A ∈ R
n×n is a symmetric Hessian matrix of the cost function f , and b ∈ R

n is the

objective right hand side (RHS),

1.2 QP problems 5

• hE is an affine function of the form

hE(x) = BEx− cE ,

where BE ∈ R
mE×n is the equality constraint matrix (EM), and cE ∈ R

mE is the equality

constraint right hand side (ERHS),

• hI is an affine function of the form

hI(x) = BIx− cI ,

where BI ∈ R
mI×n is the inequality constraint matrix (IM), and cE ∈ R

mI is the inequality

constraint right hand side (IRHS).

From here on, we will use the abbreviation QP for both quadratic programming (optimization

discipline) and quadratic programs (optimization problems).

An important special case of the inequality constraints BIx ≤ cI are box constraints

ℓ ≤ x ≤ u, ℓ ∈ ({−∞} ∪ R)n, u ∈ (R ∪ {∞})n.

The vectors ℓ and u are called a lower bound (LB) and upper bound (UB), respectively. If only

ℓ is prescribed, we use the term lower bound constraints or just bound constraints. They can

be rewritten in terms of the lower bound constraint function hℓ and the upper bound constraint

function hu,

hℓ(x) = ℓ− x ≤ o (1.2)

hu(x) = x− u ≤ o. (1.3)

The box constraints can be merged with the general inequality constraints:

BIx ≤ cI ∧ ℓ ≤ x ≤ u ⇔



BIx

−x

x


 ≤



cI

−ℓ

u


 ⇔ B̃Ix =



BI

−I

I


x ≤



cI

−ℓ

u


 = c̃I . (1.4)

Nevertheless, they are usually implemented separately for convenience. Finally note that box

constraints also belong to a class called separable convex constraints; more specifically, they are

one-dimensional case of spherical constraints (see [14]).

To sum up, the general optimization problem (1.1) can be in a special case of QP rewritten

as

find x̄ = argmin
x

1

2
xTAx− bTx (1.5a)

subject to BEx = cE , (1.5b)

BIx ≤ cI , (1.5c)

ℓ ≤ x ≤ u. (1.5d)

6 1 Quadratic programming

The conditions (1.5b)–(1.5d) may be expressed inline in terms of the feasibility set

x ∈ Ω = {x ∈ R
n : BEx = cE ∧BIx ≤ cI ∧ ℓ ≤ x ≤ u} . (1.6)

This is the type of problems this work deals with. We will implicitly assume that A is SPS,

m = mE +mI < n, and that both BE and BI have full row rank.

1.3

Handling unprescribed constraints

It is convenient to presume that all types of constraints (1.5b)–(1.5d) are always prescribed.

Absence of the lower bound ℓ or the upper bound u in (1.5d) can be replaced by having ℓ or u

with all entries equal to −∞ or ∞, respectively.

The situation when the linear constraints (1.5b) or (1.5c) are not present may be modelled

conveniently by allowing BE or BI having the number of rows equal to zero, respectively. We

will call such generalized matrices empty matrices.

Empty matrices help dealing with maps involving the zero vector space. We will denote an

empty matrix as ���(m,n) wherem and n, mn = 0, is the number of rows and columns, respectively.

The size subscript may be omitted (���) in case the size of the empty matrix is not important

or is obvious from context. Matrix-matrix multiplication with empty matrices is defined in the

following way. Let m,n ≥ 0, A ∈ R
m×n be an arbitrary matrix, O(m,n) ∈ R

m×n be a zero

matrix, and α, β ∈ R. Then following operations are made valid

A���
(n,0) = ���

(m,0), ���
(0,m)A = ���

(0,n), (1.7)

���
(0,n)

���
(n,0) = ���

(0,0), ���
(m,0)

���
(0,n) = O(m,n), (1.8)

α���(m,n) + β���(m,n) = ���
(m,n), (1.9)

A vector is considered here a special case of a matrix with the size of at least one dimension

equal to one. Finally, let us define another few properties:

���
(m,n) = ���

(q,s) ⇔ m = q ∧ n = s, (1.10)

(���(0,0))−1 = ���
(0,0), (1.11)

||���|| = 0, det��� = 1, (1.12)

Ker���(0,n) = R
n, Im���

(0,n) = {o(n)}. (1.13)

1.4

Optimality conditions, solution existence and uniqueness

Here we remind a result that gives us necessary and sufficient conditions to be met by the QP

solution, two theorems concerning existence of solution for particular QP classes, and finally an

1.4 Optimality conditions, solution existence and uniqueness 7

existence and uniqueness theorem for general QP. These results are taken from [10] where also

their proofs can be found.

A useful tool for the analysis of QP problems is the Lagrangian function L : Rn+m → R,m =

mE +mI + 2n, defined by

L(x,λE ,λI ,λℓ,λu) =

= f(x) + λT
EhE(x) + λT

I hI(x) + λT
ℓ hℓ(x) + λT

uhu(x) =

=
1

2
xTAx− bTx+ λT

E(BEx− cE) + λT
I (BIx− cI) + λT

ℓ (ℓ− x) + λT
u (x− u). (1.14)

The vectors λE ∈ R
mE , λI ∈ R

mI , λℓ ∈ R
n, and λu ∈ R

n are called Lagrange multipliers or

justmultipliers corresponding to equality, inequality, lower bound, and upper bound constraints,

respectively. The constraints and multipliers may be concatenated to simplify notation, h : Rn 7→

R
m, h(x) =

[
hTE(x), h

T
I (x), h

T
ℓ (x), h

T
u (x)

]T
, λ =

[
λT
E , λ

T
I , λ

T
ℓ , λ

T
u

]T
∈ R

m. Lagrangian may

be rewritten as L(x,λ) = f(x) + λTh(x).

Theorem 1.1 Let A, b, BE, cE , BI , cI , ℓ, u be the data defining the problem (1.5), admitting

rank-deficient BE and BI . The vector x̄ is the solution of the problem (1.5) if and only if there

exist Lagrange multipliers λ̄ such that

∇x L(x̄, λ̄) = Ax̄− b + BT
Eλ̄E + BT

I λ̄I − λ̄ℓ + λ̄u = o, (1.15a)

∇λE
L(x̄, λ̄) = BE x̄− cE = o, (1.15b)

∇λI
L(x̄, λ̄) = BI x̄− cI ≤ o, λ̄I ≥ o, λ̄T

I (BI x̄− cI) = 0, (1.15c)

∇λℓ
L(x̄, λ̄) = ℓ− x̄ ≤ o, λ̄ℓ ≥ o, λ̄T

ℓ (ℓ− x̄) = 0, (1.15d)

∇λu L(x̄, λ̄) = x̄− u ≤ o, λ̄u ≥ o, λ̄T
u (x̄− u) = 0. (1.15e)

Note that thanks to introducing zero-sized matrices in Section 1.3, conditions corresponding

to unprescribed constraints trivially hold. If the linear equality constraints are not prescribed,

mE = 0 and λE is an empty vector. Likewise, in case of the linear inequality constraints not

being prescribed, mI = 0 and λI is an empty vector. If the lower bounds ℓ or the upper bounds

u are not prescribed, λℓ or λu are zero vectors from R
n, respectively.

The conditions (1.15) are called Karush–Kuhn–Tucker (KKT) conditions for the solution

of the QP (1.5). If x̄ and λ̄ satisfy (1.15), then (x̄, λ̄) is called a KKT pair of the QP (1.5).

The first KKT condition (1.15a) is called stationarity condition. In (1.15b)–(1.15e), the first

column contains primal feasibility conditions which can be expressed also as x ∈ Ω, second dual

feasibility conditions, and third complementary slackness conditions.

Next two theorems formulate conditions of existence of the solution for particular subclasses

of the general QP (1.5). They are taken from propositions 2.1 and 2.10 in [10].

Theorem 1.2 Let us assume an unconstrained problem (1.5), i.e. with none of constraints

(1.5b)–(1.5d) prescribed. Then this problem has a solution x̄ if and only if b ∈ ImA. Moreover,

the problem has a unique solution x̄ if and only if A is SPD.

8 1 Quadratic programming

Theorem 1.3 Assume an equality constrained problem (1.5), i.e. with no inequality constraints

(1.5c)–(1.5d) presribed. Let R be a matrix such that ImR = KerA and let A|KerBE be SPS.

Then the problem has a solution x̄ if and only if RTb ∈ Im (RTBT
E).

The last theorem presents a sufficient condition for existence and uniqueness of the solution

of QP problem (1.5). In [10], it is a part of propositions 2.1, 2.10, 2.16 and 2.20 for particular

QP subclasses.

Theorem 1.4 Assume a problem (1.5) with any or none of constraints (1.5b)–(1.5d) prescribed.

If equality constraints (1.5b) are prescribed, let A|KerBE be SPD, else let A be SPD. Then the

problem (1.5) has a unique solution x̄.

1.5

Partially bound constrained problems

It is common that the box constraints with finite values are prescribed only on an index subset

I ⊂ (1, . . . n). The size of this subset may be much lower than n. Hence, it can be computation-

ally advantageous to work only with this subset rather than deal with the whole set of indices.

Moreover, implementation of infinite values is specific for a machine and language; sometimes

it can be modelled only by using “sufficiently large” floating point values. Finally, sometimes it

is more convenient also in mathematical considerations to refer to the subset I explicitly, and

almost inevitable if we generalize box constraints to separable convex constraints [14].

These reasons lead us to introduce an alternative form of the problem (1.5)

find x̄ = argmin
x

1

2
xTAx− bTx (1.16a)

subject to BEx = cE , (1.16b)

BIx ≤ cI , (1.16c)

ℓI ≤ xI ≤ uI , (1.16d)

where vI means the restriction of the vector v to the indices I, i.e.

[vI]i = [v]Ii , i = 1, . . . , |I|.

We can without loss of generality assume that I = (1, . . . , p) for a given upper index p, because

the general case can be expressed using a proper index permutation.

The Lagrangian (1.14) and KKT conditions (1.15) in Theorem 1.1 then read

L : Rn+m → R, m = mE +mI + 2|I|,

L(x,λE ,λI ,λℓI ,λuI) =
1

2
xTAx− bTx+ λT

E(BEx− cE)

+ λT
I (BIx− cI) + λT

ℓI(ℓI − xI) + λT
uI(xI − uI). (1.17a)

1.6 KKT conditions practically 9

∇x L(x̄, λ̄) = Ax̄− b+BT
Eλ̄E +BT

I λ̄I +

[
−I(p,p)

O(n−p,p)

]
λ̄ℓI +

[
I(p,p)

O(n−p,p)

]
λ̄uI = o, (1.17b)

∇λE
L(x̄, λ̄) = BE x̄− cE = o, (1.17c)

∇λI
L(x̄, λ̄) = BI x̄− cI ≤ o, λ̄I ≥ o, λ̄T

I (BI x̄− cI) = 0, (1.17d)

∇λℓ
L(x̄, λ̄) = ℓI − x̄I ≤ o, λ̄ℓI ≥ o, λ̄T

ℓI(ℓI − x̄I) = 0, (1.17e)

∇λu L(x̄, λ̄) = x̄I − uI ≤ o, λ̄uI ≥ o, λ̄T
uI(x̄I − uI) = 0. (1.17f)

Notice that it obviously suffices to store only ℓI , uI , λℓI , λuI in an implementation because the

rest of ℓ, u, λℓ, λu is in fact populated with constant values −∞, ∞, 0, 0, respectively. Hence,

we will further write ℓ, u, λℓ, λu instead of ℓI , uI , λℓI , λuI .

1.6

KKT conditions practically

There are good reasons to compute not only the solution x̄ but also the corresponding multi-

pliers λ̄ as they can have some physical meaning. But even in case we do not need them in

our simulation, they are an important tool for the “solver self-check”, giving us information

whether an error of the solution found by the solver is below the given tolerance. As stated

in Theorem 1.1, if we show there are some multipliers λ̄ such that (x̄, λ̄) is a KKT pair of the

given QP, we can be sure x̄ really solves this QP. Hence, if the results are erroneous but there

is λ̄ meeting the KKT conditions (1.17) within the prescribed tolerance, we can be suspicious

rather of the procedure which generates the QP data then the QP solver itself.

In case of unconstrained minimization, all multipliers are zero vectors, and only the station-

arity condition remains (1.17b) in the form

ḡ = Ax̄− b = o, (1.18)

where g = ∇xL(x,λ) = ∇xf(x) is the gradient of the objective function. With iterative methods

and limited accuracy of computer arithmetic, we almost never get the vector of exact zeros. We

rather interpret g as the opposite of the residual r = b −Ax̄ of the given approximation of x̄,

and check that the residual norm ||r|| = ||g|| = ||Ax − b|| is sufficiently small, i.e. lower than

the demanded tolerance. It is actually better to evaluate the relative residual norm ||g||/||b||

which takes into account the order of magnitude of the input data. The gradient g is relatively

easy to compute and it is additionally often needed in the iterative method itself. Thus the

typical stopping criterion reads

||g||/||b|| < ε, (1.19)

10 1 Quadratic programming

where ε is the demanded tolerance, e.g. 10−6. We have got an approximated form of the

stationarity condition (1.18) and we can express quantitatively to what extent is this original

condition met.

In case of constrained minimization, some of the multipliers are non-zero and the topic

becomes more interesting. In order to avoid computation of the Lagrange multipliers and sub-

sequent evaluation of the KKT conditions in each iteration, which may be relatively costly,

alternative stopping criteria are developed. For example, the norm of the projected gradient

P (g) ∈ Ω is checked, where P is a projection to the feasible set Ω. However, the projection itself

is a possible source of error – it may even be an optimization problem on its own. This leads us

to evaluate the KKT satisfaction at least at the end of the solution phase for validation of the

produced result.

Similarly to the unconstrained case, we again need the KKT conditions to be expressed in a

form suitable for quantitative evaluation. The gradient of the Lagrangian is more complicated,

g = ∇xL(x̄, λ̄) = Ax̄− b+BT
Eλ̄E +BT

I λ̄I +

[
−I(p,p)

O(n−p,p)

]
λ̄ℓ +

[
I(p,p)

O(n−p,p)

]
λ̄u,

but the approximate stationarity condition (1.17b) again reads

||g||/||b|| < ε. (1.20)

The KKT conditions related to inequality constraints (1.17d) can be reformulated as

BI x̄− cI ≤ o −→ ||max(BIx− cI ,o)|| < ε (1.21)

λ̄I ≥ o −→ ||min(λI ,o)|| < ε (1.22)

λ̄T
I (BI x̄− cI) = 0 −→ |λT

I (BIx− cI)| < ε. (1.23)

where max(., .) denotes the element-wise maximum of two vectors (see Symbols). Conditions

for lower bounds (1.17e) and upper bounds (1.17f) are proceeded analogously.

1.7

Computation of Lagrange multipliers

Let us now discuss how the Lagrange multipliers can be computed for certain special configura-

tions of constraints. We discuss here only few cases which are useful further.

1.7.1 Computing λℓ of bound and equality constrained problems

Let us first focus on bound and equality constrained problems, i.e. with (BI , cI) = (���,���) and

u = ∞
(|I|,1). In this case, from the KKT conditions (1.17) only (1.17b) and (1.17e) are effective

1.7 Computation of Lagrange multipliers 11

as λ̄I = λ̄uI = o. This type of QP commonly arises by applying dualization, discussed later.

Let us denote

g = ∇xLE(x,λE) = Ax− b+BT
EλE . (1.24)

The stationarity condition (1.17b) reads

∇xL(x,λ) = g −

[
I(p,p)

O(n−p,p)

]
λℓ = o. (1.25)

Hence, the KKT conditions (1.17) can be simplified into the form

gI ≥ o, gR = o, and gT
I (xI − ℓ) = 0, (1.26)

where R = (p+ 1, . . . , n). Moreover, for the optimal ḡ satisfying (1.26), it holds that

λ̄ℓ = ḡI . (1.27)

Notice that the KKT conditions (1.17) can be conveniently expressed solely by means of the gra-

dient of the Lagrangian for equality constrained problems, and the bound constraint multiplier

λ̄ℓ is fully determined by the pair (x̄, λ̄E). Thus we can call this pair the KKT pair of the bound

and equality constrained problem. Nevertheless, it must not be confused with the KKT pair of

the corresponding equality constrained problem, arisen by removing the bound constraints.

Note also that we allow here purely bound constrained problems with (BE , cE) = (���,���),

for which λE = ��� and the term BT
EλE vanishes.

1.7.2 Computing λℓ and λu of box and equality constrained QPs

In this case λ̄I = o, so (1.17d) trivially holds. Using g from (1.24), the stationarity condition

(1.17b) reads

∇xL(x,λ) = g −

[
I(p,p)

O(n−p,p)

]
λℓ +

[
I(p,p)

O(n−p,p)

]
λu = o. (1.28)

(1.29)

From here and the dual feasibility conditions in the middle column of (1.17e) and (1.17f), we

get

λu ≥ o ∧ λℓ = gI + λu ≥ o. (1.30)

Thus there are infinitely many choices of λu and λℓ, and they take the form

λu ≥ max(−gI ,o), λℓ = gI + λu.

However, there is arguably no point in choosing other then the minimal option

λu = max(−gI ,o), λℓ = max(o,gI).

12 1 Quadratic programming

Indeed, it contains many zero entries simplifying evaluation of the complementarity conditions

in the last column of (1.17e) and (1.17f), and if the conditions are not met, then adding some

non-negative vector to λu cannot fix that.

Again, the discussion above holds also for purely box constrained problems. Note also that

for u = ∞ we get

λu = max(−gI ,o) = o, λℓ = max(o,gI) = gI ,

hence Section 1.7.1 discusses a special case.

1.7.3 Computing λE

Assume QP with prescribed equality constraints, with or without linear inequality and/or box

constraints, and that the solution x̄ and the optimal Lagrange multipliers λ̄I , λ̄ℓ, λ̄u, satisfying

(1.15c)–(1.15e) are known. Let us seek λE such that the remaining KKT conditions (1.15a)–

(1.15b) are also met.

Denoting

g = Ax̄− b+BT
I λ̄I − λ̄ℓ + λ̄u, (1.31)

the stationarity condition (1.15a) can be equivalently expressed as an over-determined linear

system

BT
EλE = −g, (1.32)

and the optimal equality constraint multiplier λ̄E must solve this system.

Let us remind our implicit presumption that BE has full row rank; in that case BT
E has

full column rank and the equation above has at most one solution. However, the least-square

solution solving the corresponding normal equation

BEB
T
EλE = −BEg, (1.33)

exists always and can be explicitly expressed using the left inverse of BT
E as

λ̃E = −(BEB
T
E)

−1BEg = −(BT
E)

Lg.

If the classical solution exists, it equals the least-square solution. Moreover, the classical solution

exists if and only if

g ∈ ImBT
E ,

which is thanks to Theorem 1.1 automatically true if we presume optimality of x̄, λ̄I , λ̄ℓ and

λ̄u. Hence, we can express the sought λ̄E as

λ̄E = −(BT
E)

Lg. (1.34)

We can convince ourselves we have found the proper λ̄E by substituting it back into (1.32),

yielding an equality

−BT
E(B

T
E)

Lg = −g.

Indeed, this equality holds as BT
E(B

T
E)

L is a projector onto ImBT
E and g ∈ ImBT

E .

13

CHAPTER II

QP transforms

This chapter deals with the novel notion of a QP transform. It can be described as a mapping

reformulating an original QP into the new one, provided the solution of the new QP can be

transformed back into the solution of the original one. Performing a QP transform is typically

motivated by the fact that the derived QP is somehow simpler to solve – e.g. its Hessian has

smaller dimension, is better conditioned, some constraints are eliminated, have more favourable

structure etc. QP transforms turn out to be a useful tool which simplifies implementation of the

QP solvers, and they form one of the key design concepts in the PermonQP library (Section 7.4).

Section 2.1 establishes a special “inline” notation of QP problems. The notion of QP trans-

form is introduced in Section 2.2. Section 2.3 presents several particular QP tranforms. Sec-

tion 2.4 shows sample uses of QP transforms.

2.1

Inline QP notation

Let us introduce a convenient notation of QP problems which makes description of QP transforms

more clear. Particular instances of the generic QP problem scheme (1.16) will be labelled

QPk, k = 1, 2, We will describe the instance QP1 with any of the constraints (1.16b)–(1.16d)

prescribed by an ordered set of its defining objects,

QP1 = QP[A,b | BE , cE | BI , cI | ℓ,u,I].

This notation will be called the signature of the QP. For sake of simple notation, we introduce

following rules for the last triple corresponding to box constraints. The last object I is optional

14 2 QP transforms

and denotes the index set on which the box constraints are prescribed. If I is not present, we

assume I = (1, . . . , n), i.e. the fully constrained problem (1.5). If only ℓ is prescribed and u is

not, we will write either (ℓ,���) or (ℓ,���,I), preserving the previous rule. If neither ℓ nor u are

prescribed, we will write (���,���) and I is implicitly an empty index set.

The (primal) solution of the given QP will be denoted x̄, and the optimal Lagrange multipliers

corresponding to the linear equality, linear inequality, lower bound, upper bound constraints will

be marked as λ̄E , λ̄I , λ̄ℓ, λ̄u, respectively. The solution signature of QP1 reads

QP1 = QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u,I].

We apply to the last triple the same rules as to (ℓ,u,I) in previous paragraph.

2.2

QP transform definition

A QP transform T is a mapping which maps the given QP problem QP1 to the new QP problem

QP2,

T (QP1) = QP2.

The solution QP1 of the original problem QP1 must be recoverable from the solution QP2 of the

derived problem QP2 by means of the corresponding reconstruction function T̄ such that

QP1 = T̄ (QP2).

Figure 2.1 shows a graphical example of a QP transform and corresponding reconstruction

function. Some important QP transforms are introduced in the following section.

2.3

Concrete QP transforms

This section presents several concrete QP transforms. The selection surely does not include many

potentially useful transforms; it is motivated mainly by modular design of PERMON solvers

(Chapter 7) for solving large-scale variational inequalities using FETI DDM (Chapter 4). Each

of the subsections is devoted to one QP transform, starting with a synopsis of the transform,

followed by a detailed discussion.

2.3 Concrete QP transforms 15

QPHomogenizeEq

reconstruction function

QP0 QP1

Figure 2.1: Example of a QP transform and reconstruction function – homogenization of the

equality constraints (Section 2.3.3).

2.3.1 Box constraints elimination

Synopsis EliminateBox derives a QP without box constraints by embedding them into

linear inequality constraints

EliminateBox(QP1) = QP2 : [ℓ | u] → [��� | ���]

QP1 = QP[A,b | BE, cE | BI , cI | ℓ,u,I]

QP2 = QP[A,b | BE, cE | B̃I , c̃I | ���,���] (2.1)

QP2 = QP[x̄ | λ̄E | λ̃I | ���,���]

QP1 = QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u,I] (2.2)

I = (1, . . . , p), 0 ≤ p ≤ n,

B̃I =




BI

−I(p,p) O(p,n−p)

I(p,p) O(p,n−p)


 , c̃I =




cI

−ℓI

uI


 , λ̃I =




λ̄I

λ̄ℓI

λ̄uI


 (2.3)

We start with this transform to show the reader a simple example of the QP transform

concept. In presence of linear inequality constraints, it may be practical to eliminate box

16 2 QP transforms

constraints in order to simplify implementation of solvers. They can then assume that either

box or linear inequality constraints are present. If both types are present, the box constraints

will be merged with the linear inequality ones according to (2.3).

2.3.2 Affine space shift

Synopsis Shift shifts the feasible set along the given vector s

Shift(QP1, s) = QP2

QP1 = QP[A,b | BE , cE | BI , cI | ℓ,u]

QP2 = QP[A,b+As | BE , cE +BEs | BI , cI +BIs | ℓ+ s,u+ s] (2.4)

QP2 = QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u]

QP1 = QP[x̄− s | λ̄E | λ̄I | λ̄ℓ, λ̄u] (2.5)

Solving QP1 means finding

x̄1 = arg min
x∈Ω1

f(x),

where

Ω1 = {x ∈ R
n : BEx = cE , BIx ≤ cI , ℓ ≤ x ≤ u}.

We may introduce a substitution

x̄1 = x̄2 − s

and minimize a new objective with the shifted RHS b+As on the shifted feasible set

Ω2 = Ω1 + s.

We get the corresponding new formulation QP2 by shifting all right hand sides as shown in (2.4),

and x̄1 using (2.5).

It is intuitively clear that the Lagrange multipliers remain unchanged. This can be easily

proven by substituting (x̄− s, cE +BEs, cI +BIs, ℓ+ s, u+ s) for (x̄, cE , cI , ℓ,u) in the KKT

conditions (1.15) and observing that KKT conditions remain unchanged.

2.3 Concrete QP transforms 17

2.3.3 Equality constraints homogenization

Synopsis HomogenizeEq derives a QP with homogeneous equality constraints, i.e. with

zero ERHS
HomogenizeEq(QP1) = QP2 : cE → o

QP1 = QP[A,b | BE , cE | BI , cI | ℓ,u]

QP2 = QP[A,b−Ax̃ | BE ,o | BI , cI −BI x̃ | ℓ− x̃,u− x̃] (2.6)

QP2 = QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u]

QP1 = QP[x̄+ x̃ | λ̄E | λ̄I | λ̄ℓ, λ̄u] (2.7)

x̃ solves BE x̃ = cE (2.8)

QP2 = Shift(QP1,−x̃) (2.9)

This QP transform is a special case of the Affine space shift Section 2.3.2 with s = −x̃ where

x̃ is a given arbitrary vector satisfying (2.8). For the feasible set Ω1 of QP1, it apparently holds

that

Ω1 ⊂ ΩE = {x ∈ R
n : BEx = cE}.

ΩE is an affine space, a linear manifold of the form

ΩE = x̃+KerBE . (2.10)

The nullspace of BE

KerBE = {x ∈ R
n : BEx = o},

is a linear space containing our desired feasible set Ω2,

Ω2 ⊂ KerBE .

The relation (2.10) implies KerBE = ΩE − x̃ which means shifting all constraint vectors as

shown in (2.6). Once x̄2 is found, we can recover x̄1 by using (2.7). A typical choice of x̃ is the

least squares solution of the underdetermined system (2.8)

x̃ = BT
E(BEB

T
E)

−1cE = BR
EcE . (2.11)

18 2 QP transforms

2.3.4 Enforcing equality constraints using penalty

Synopsis PenalizeEq enforces the equality constraints using the penalty method

PenalizeEq(QP1) = QP2 : [BE | cE] → [��� | ���]

QP1 = QP[A,b | BE , cE | BI , cI | ℓ,u]

QP2 = QP[A+ ρBT
EBE , b+ ρBT

EcE | ���,��� | BI , cI | ℓ,u] (2.12)

QP2 = QP[x̄ | ��� | λ̄I | λ̄ℓ, λ̄u]

QP1 = QP[x̄ | ρ(BE x̄− cE) | λ̄I | λ̄ℓ, λ̄u] (2.13)

ρ > 0 (penalty parameter), (2.14)

BE ,BI may have dependent rows. (2.15)

This QP transform enforces the equality constraints by building them into the Hessian, more

specifically by adding the penalization term ρBT
EBE to A. This term penalizes the violation of

the equality constraints BEx = cE . Moreover, it may be considered as a regularization term

because A+ ρBT
EBE is SPD provided A is positive semidefinite and KerA∩KerBE = {o}, see

Lemma 1.2 in [10].

The larger is the penalty parameter ρ the nearer is the solution of the derived problem x̄2 to

the solution of the original problem x̄1. Informally said, when the penalty ρ tends to infinity, the

equality x̄2 = x̄1 is almost exactly satisfied. For a finite ρ the equality constraints are enforced

only approximately. However, they can be satisfied to an arbitrary given precision. This is why

they are omitted in (2.12).

Let us discuss this transform in more detail, based on observations from [10] where only a

particular case of equality constrained problems is considered. Assume problem Q̂P2 which is

the same as QP2 except that the equality constraints are still explicitly present, i.e.

Q̂P2 = QP[A+ ρBT
EBE, b+ ρBT

EcE | BE , cE | BI , cI | ℓ,u].

The objective functions of QP1 and Q̂P2 read respectively

f0(x) =
1

2
xTAx− xTb, (2.16)

fρ(x) =
1

2
xT (A+ ρBT

EBE)x− xT (b+ ρBT
EcE) =

= f0(x) +
ρ

2
||BEx− c||2, (2.17)

2.3 Concrete QP transforms 19

and their gradients with respect to x are

∇xf0(x) = Ax− b, (2.18)

∇xfρ(x) = (A+ ρBT
EBE)x− (b+ ρBT

EcE) =

= ∇xf0(x) + ρBT
E(BEx− cE). (2.19)

Lagrangians of the objective functions take the form

L0(x,λ) = f0(x) + λT
E(BEx− cE) + ωr(x,λ), (2.20)

Lρ(x,λ) = fρ(x) + λT
E(BEx− cE) + ωr(x,λ) =

= f0(x) + λT
E(BEx− cE) + ωr(x,λ) +

ρ

2
||BEx− c||2 =

= L0(x,λ) +
ρ

2
||BEx− c||2, (2.21)

where ωr(x,λ) = λT
r hr(x), hr(x) =

[
hTI (x), h

T
ℓ (x), h

T
u (x)

]T
and λr =

[
λT
I , λ

T
ℓ , λ

T
u

]T
. Let us

also introduce the feasible set of the inequality constraints

Ωr = {x ∈ R
n : BIx ≤ cI ∧ ℓ ≤ x ≤ u} .

Lρ is called an augmented Lagrangian of QP1. Gradients of both Lagrangians with respect to x

read

∇xL0(x,λ) = ∇xf0(x) +BT
EλE +∇xωr(x,λ), (2.22)

∇xLρ(x,λ) = ∇xfρ(x) +BT
EλE +∇xωr(x,λ) =

= ∇xf0(x) +BT
E(λE + ρ(BEx− cE)) +∇xωr(x,λ) =

= ∇xL0(x,λ) + ρBT
E(BEx− cE), (2.23)

where ∇xωr(x,λ) = BT
I λ̄I − λ̄ℓ + λ̄u.

The first KKT condition (1.15a) for the solution of QP1 and Q̂P2 takes the form, respectively,

∇xL0(x,λ) = o, (2.24)

∇xLρ(x,λ) = o. (2.25)

Let (x̄, λ̄) be a KKT pair of QP1, thus it satisfies (2.24) and let us substitute cE = BE x̄

into (2.25). We can see that QP1 has exactly the same KKT pair as Q̂P2, i.e. the problems are

equivalent.

Furthermore, let us show how the penalty enforces the equality constraints. Assume arbitrary

fixed λ̂E ∈ R
m
E and

(x̄ρ, λ̂) = arg min
x∈Rn

max
λr≥o

λE=λ̂E

Lρ(x,λ), (2.26)

x̄0 = arg min
x∈Rn

L0(x, λ̂). (2.27)

20 2 QP transforms

Then the solution x̄ of QP1 (which is at the same time solution of Q̂P2) satisfies

L0(x̄ρ, λ̂) +
ρ

2
||BE x̄ρ − cE ||

2 = Lρ(x̄ρ, λ̂)
(2.26)

≤ Lρ(x̄, λ̂) = f0(x̄) + ωr(x̄, λ̂),

so that we get

||BE x̄ρ − cE ||
2 ≤

2

ρ

(
f0(x̄) + ωr(x̄, λ̂)− L0(x̄ρ, λ̂)

)
.

Finally, this implies using L0(x̄0, λ̂) ≤ L0(x̄ρ, λ̂) following from (2.27) that

||BE x̄ρ − cE ||
2 ≤

2

ρ

(
f0(x̄) + ωr(x̄, λ̂)− L0(x̄0, λ̂)

)
. (2.28)

We can conclude that the feasibility error ||BE x̄ρ−cE || expressing violation of the second KKT

condition (1.15b) can be made arbitrarily small.

Now let us focus on the satisfaction of the first KKT condition (2.24). Let us denote

λ̄Eρ = λ̂E + ρ(BE x̄ρ − cE), λ̄ρ =

[
λ̄Eρ

λ̂r

]
. (2.29)

Then

Ax̄ρ − b+BT
Eλ̄Eρ +∇xωr(x̄ρ, λ̄ρ)

(2.22)
= ∇xL0(x̄ρ, λ̄ρ)

(2.23)(2.29)
= ∇xLρ(x̄ρ, λ̂)

(2.26)
= o,

so that (x̄ρ, λ̄ρ) satisfies the first KKT condition (2.24) exactly.

The given λ̂ ∈ R
m, optimal in terms of inequality constraints, can be considered as an ap-

proximation of the solution Lagrange multipliers λ̄ of QP1. Nevertheless, from discussion above

it is obvious that λ̄ρ is always better approximation. We can conclude that (x̄ρ, λ̄ρ) approxi-

mates the KKT pair of QP1 with an arbitrarily small error. Moreover, x̄ρ and λ̄ρ are obtained

performing only inequality constrained minimization. Thus the lack of equality constraints in

QP2 is justified.

By this means, we get only an approximate KKT pair whose error depends indirectly on

the penalty ρ and the least nonzero singular value of BE , and directly on the regular condition

number of A. See Section 4.2 in [10] for rigorous feasibility and approximation error estimates.

This simple penalty method is a base for the more sophisticated algorithm of Section 3.2 which

applies the penalty method in the loop with progressive correction of λE . Herewith, convergence

rate and both approximation and feasibility errors are much less affected by the a priori choice

of ρ.

2.3 Concrete QP transforms 21

2.3.5 Preconditioning by the orthogonal projector

Synopsis PreconditionByP preconditions the objective function using the orthogonal

projector onto the nullspace of BE

EnforceEq(QP1) = QP2

QP1 = QP[A,b | BE ,o | BI , cI | ℓ,u]

QP2 = QP[PAP,Pb | BE ,o | BI , cI | ℓ,u] (2.30)

QP2 = QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u]

QP1 = QP[x̄ | λ̄E + (BT
E)

L(b−Ax) | λ̄I | λ̄ℓ, λ̄u] (2.31)

P = I−BR
EBE , ImP = KerBE (2.32)

This is a special case of preconditioning where the preconditioner is the matrix P from (2.32),

which is a projector onto KerBE . Let us remind that

Q = BT
E(BEB

T
E)

−1BE = BT
E(B

T
E)

L = BR
EBE and P = I−Q (2.33)

are complementary orthogonal projectors onto ImBT
E and KerBE , respectively. This means

they have the following properties

ImP = KerBE = KerQ, (2.34)

ImQ = ImBT
E = KerP, (2.35)

ImP⊕ ImQ = KerBE ⊕ ImBT
E = R

n. (2.36)

Let us derive the relation between equality constraint multipliers of QP1 and QP2. We can

notice that the optimality conditions (1.15) differ only in the statinonarity condition (1.15a)

which reads for QP1 and QP2, respectively,

∇xL1(x,λ) = Ax− b+BT
EλE +BT

I λI + λu − λℓ = o, (2.37)

∇xL2(x,λ) = PAPx−Pb+BT
EλE +BT

I λI + λu − λℓ = o. (2.38)

Let us split the equality constraint multipliers and inequality constraint ones. The KKT pairs

of QP1 and QP2 must respectively satisfy

∇xL1(x̄1, λ̄E1, λ̄r1) = Ax̄1 − b+BT
Eλ̄E1 + r(λ̄r1) = o, (2.39)

∇xL2(x̄2, λ̄E2, λ̄r2) = PAPx̄2 −Pb+BT
Eλ̄E2 + r(λ̄r2) = o, (2.40)

22 2 QP transforms

where

λr =
[
λT
I , λ

T
ℓ , λ

T
u

]T
,

r(λr) = BT
I λI + λu − λℓ. (2.41)

Assume that x̄2 and λ̄r2 are respectively the solution and the optimal multipliers of inequality

constraints of QP2, satisfying optimality conditions (1.15b)–(1.15e). Denote r = r(λ̄r2).

First of all, let us seek the equality constraint multiplier λ̄E2 such that the stationarity

condition (2.40) is satisfied. Let us proceed similarly to Section 1.7.3. The equation (2.40) can

be equivalently expressed as an over-determined linear system

BT
EλE2 = −(PAPx̄2 −Pb+ r), (2.42)

and the optimal equality constraint multiplier λ̄E2 must solve this system. Thanks to our

assumptions, there exists one and only one such λ̄E2 and is equal to the least-square solution

λ̄E2 = −(BT
E)

L (PAPx̄2 −Pb+ r) .

Noticing PAPx̄2,Pb ∈ KerBE , we get BE(PAPx̄2 − Pb) = o, which means the equation

above reads

λ̄E2 = −(BT
E)

Lr. (2.43)

Let us show that such λ̄E2 indeed solves the equation (2.42). We substitute back into this

relation and move r to the same side,

−BT
E(B

T
E)

Lr+ r
?
= −(PAPx̄2 −Pb). (2.44)

The left-hand side is equal to

−Qr+ r = Pr.

Regarding the right hand side, we assume x̄2 is the solution of QP2, so from (2.40) it follows

that

−(PAPx̄2 −Pb) = Pr, (2.45)

hence the equality (2.44) is proven. We can conclude that for the given x̄2 and λ̄r2, there is a

unique equality constraint multiplier λ̄E2 of QP2, taking the form

λ̄E2 = −(BT
E)

Lr(λ̄r2). (2.46)

Furthermore, we shall derive how the KKT pair (x̄1, λ̄E1, λ̄r1) of QP1 can be recovered from

(x̄2, λ̄E2, λ̄r2). Let us try to use x̄1 = x̄2 and λ̄r1 = λ̄r2. In this case, satisfaction of all but the

first KKT conditions (1.15) is inherited from QP2. Let us carry out the corresponding equality

constraint multipliers λ̄E1. From (2.39) it easily follows that

r = −(Ax̄1 − b+BT
Eλ̄E1). (2.47)

2.3 Concrete QP transforms 23

Substituting this term into (2.46), we get

λ̄E2 = (BT
E)

L(Ax̄1 − b) + λ̄E1.

Hence,

λ̄E1 = λ̄E2 − (BT
E)

L(Ax̄1 − b). (2.48)

Finally, let us show that the suggested triplet (x̄1, λ̄E1, λ̄r1) meets the stationarity condition

(2.39) of QP1:

∇xL1(x̄1, λ̄E1, λ̄r1) = Ax̄1 − b+BT
Eλ̄E1 + r(λ̄r1) =

(2.48)
= (Ax̄2 − b) +BT

E

(
λ̄E2 − (BT

E)
L(Ax̄2 − b)

)
r(λ̄r2) =

= (Ax̄2 − b)−BT
E(B

T
E)

L(Ax̄2 − b) +BT
Eλ̄E2 + r(λ̄r2) =

(2.46)
= P(Ax̄2 − b)−BT

E(B
T
E)

Lr(λ̄r2) + r(λ̄r2) =

= P
(
Ax̄2 − b+ r(λ̄r2)

) (2.45)
= o. (2.49)

2.3.6 Eliminating homogeneous equality constraints with the orthogonal pro-

jector

Synopsis PreconditionByP eliminates homogeneous equality constraints using the or-

thogonal projector onto KerBE provided there are no other constraints prescribed

EnforceEq(QP1) = QP2 : [BE | cE = o] → [��� | ���]

QP1 = QP[A,b | BE ,o | ���,��� | ���,���]

QP2 = QP[PAP,Pb | ���,��� | ���,��� | ���,���] (2.50)

QP2 = QP[x̄ | ��� | ��� | ���,���]

QP1 = QP[Px̄ | (BT
E)

L(b−Ax̄) | ��� | ���,���] (2.51)

P = I−BR
EBE , ImP = KerBE (2.52)

This is a special case of the transform described in Section 2.3.5 where no other than linear

equality constraints are prescribed. In this case, the orthogonal projector P from (2.52) enforces

on its own the equality constraints. When combined with the homogenization transform (see

Section 2.3.3) and CG method solving the resulting unconstrained QP, we get a simple method

for solution of equality constrained QP.

24 2 QP transforms

Showing that equality constraints are eliminated in this case is easy. From (2.40) and from

the fact that no inequality constraints are prescribed, it follows that

−r(λr2) = PAPx̄2 −Pb+BT
Eλ̄E2 = o. (2.53)

Moreover, from obvious facts

KerBE ∋ PAPx̄2 −Pb = −BT
E2λ̄E2 ∈ ImBT

E ,

and from orthogonality of the spaces we get

PAPx̄2 −Pb = o = BT
Eλ̄E2.

The left equality is actually the stationarity condition of QP2 and corresponds to unconstrained

problem whose solution is also solution of QP1. The feasibility condition of QP1, BEx1 = o, is

satisfied automatically for x̄1 = Px̄2.

Note that when a Krylov subspace method is used for solving the resulting problem, solution

approximations do not leave ImP = KerBE . Thus the Hessian of QP2 can be simplified to PA.

Moreover, for the solution of QP2 it holds x̄ ∈ KerBE so that the solution of QP1 is the same

vector Px̄ = x̄. These facts follow from the fact

K(PAP,PAPx0 −Pb) = K(PA,PAPx0 −Pb) ⊆ KerBE ,

where K(M,x) denotes any Krylov space generated by matrix M and vector x, and x0 is an

arbitrary initial solution guess.

2.3.7 Dualization

Synopsis Dualize transforms the given QP into the dual one. Solution of the dual QP

is the vector of the optimal Lagrange multiplier of the original QP.

Dualize(QP1) = QP2

QP1 = QP[A,b | BE , cE | BI , cI | ���,���]

QP2 = QP[F,d | G, e | ���,��� | o,���,I] (2.54a)

QP2 = QP[λ̄ | ᾱ | ��� | β̄,���,I]

QP1 = QP[A†(b−BT λ̄)−Rᾱ | λ̄E | λ̄I | ���,���] (2.54b)

2.3 Concrete QP transforms 25

BE,BI may have dependent rows, (2.54c)

R ∈ R
n×d, ImR = KerA, dim ImR = d, (2.54d)

B =

[
BI

BE

]
, c =

[
cI

cE

]
, λ̄ =

[
λ̄I

λ̄E

]
(2.54e)

F = BA†BT , d = BA†b− c, I = (1, . . . ,mI), (2.54f)

G = RTBT , e = RTb. (2.54g)

First of all, note that box constraints are not considered here as they can be merged with

the linear inequality constrains BIx ≤ cI using the EliminateBox transform according to

Section 2.3.1. The following discussion is based on the proof of Proposition 2.22 in [10]. Assume

that (x̄, λ̄) is a KKT pair for QP1, so that it meets KKT condition (1.15) which now more

specifically read

∇xL(x̄, λ̄) = Ax̄− b+BT λ̄ = o, (2.55a)

[∇λL(x̄, λ̄)]I = [Bx̄− c]I ≤ o, (2.55b)

[∇λL(x̄, λ̄)]E = [Bx̄− c]E = o, (2.55c)

λ̄T
I [Bx̄− c]I = 0, (2.55d)

λ̄I ≥ o, (2.55e)

where I = (1, . . . ,mI) and E = (mI + 1, . . . , n), I ∪ E = (1, . . . , n), denote the index set

corresponding to inequality and equality constraints, respectively, i.e.

BI = BI and BE = BE .

For a given vector λ ∈ R
m, the linear system (2.55a) is solvable with respect to x if and only

if

b−BTλ ∈ ImA. (2.56)

This can be expressed in terms of the matrix R whose columns span the kernel of A as

RT (BTλ− b) = o. (2.57)

If the latter condition is satisfied, then we can use any symmetric generalized inverse A† to find

all solutions of (2.55a) with respect to x in the form

x(λ,α) = A†(b−BTλ)−Rα, α ∈ R
d. (2.58)

Note that in a special case of nonsingular1 A, KerA = {o}, d = 0, R = ���
(n,0), α = ���

(0,1) and

A† = A−1, i.e. the previous equation is simplified into the form

x(λ) = A−1(b−BTλ). (2.59)

1i.e. SPD in our case as we assume only SPS matrices

26 2 QP transforms

After substituting for x into (2.55b)–(2.55d), we get

[−BA†BTλ+ (BA†b− c)−BRα]I ≤ o, (2.60a)

[−BA†BTλ+ (BA†b− c)−BRα]E = o, (2.60b)

λT
I [−BA†BTλ+ (BA†b− c)−BRα]I = 0. (2.60c)

From the other side, let us introduce

Λ(λ,α) =
1

2
λTBA†BTλ− λT (BA†b− c) +αT (RTBTλ−RTb), (2.61)

g = ∇λΛ(λ,α) = BA†BTλ− (BA†b− c) +BRα. (2.62)

It is the Lagrangian and its gradient corresponding to the equality constrained QP

QP2a = QP[BA†BT ,BA†b− c | RTBT ,RTb | ���,��� | ���,���]. (2.63)

However, we can rewrite the relations (2.60) using g from (2.62), yielding

gI ≥ o, gE = o, and λT
I gI = 0. (2.64)

Comparing (2.64) with the special form of KKT conditions (1.26) for bound and equality con-

strained problems, it is obvious that (2.64) are the KKT conditions for

QP2b = QP[BA†BT ,BA†b− c | RTBT ,RTb | ���,��� | o,���,I], (2.65)

with λ, α, and β = gI being the solution vector, the Lagrange multipliers of the equality

constraints RTBT = RTb, and the Lagrange multipliers of the bound constraint λI ≥ o,

respectively. The latter follows from (1.27). The solution signature of QP2b reads

QP2b = QP[λ̄ | ᾱ | ��� | β̄,���,I]. (2.66)

It suffices to use the notation introduced in (2.54) to get that QP2b = QP2. Let us remind that

the optimal bound constraint multiplier β̄ of QP2 is fully determined by the pair (λ̄, ᾱ) which

can be called the KKT pair of QP2 as stated in Section 1.5. Note also that in case of QPs

without inequality constraints, we get QP2 = QP2b = QP2a.

Finally, let us check that if (λ̄, ᾱ) is a KKT pair for QP2, then (x̄, λ̄) is a KKT pair for QP1,

where x̄ is defined by (2.58). Presume (λ̄, ᾱ) is a KKT pair of QP2. First of all, it of course

means that λ̄ meets the primal feasibility condition with respect to QP2 so that λ̄I ≥ o, and

the dual feasibility condition (2.55e) of QP1 is met. Then the KKT conditions (2.64) hold,

ḡI ≥ o, gE = o, λ̄T
I gI = 0,

where

ḡ = ∇
λ̄
Λ(λ̄, ᾱ)

(2.62)
= BA†BT λ̄− (BA†b− c) +BRᾱ =

= −B[A†(b−BT λ̄)−Rᾱ]
(2.58)
= −Bx̄+ c,

2.4 Examples 27

hence

[Bx̄− c]I ≤ o, [Bx̄− c]E = o, λ̄T
I [Bx̄− c]I = 0,

which means KKT conditions (2.55b)–(2.55d) of QP1 are satisfied. To prove the stationarity

condition (2.55a), notice that from (2.56) it follows

∃y ∈ R
n : b−BT λ̄ = Ay.

Thus

Ax̄− b+BT λ̄ = A(A†(b−BT λ̄)−Rᾱ)− b+BT λ̄ =

= A(A†Ay −Rᾱ)−Ay =

= AA†Ay −Ay = o.

To conclude, we have proven that if (x̄, λ̄) is a KKT pair of QP1, i.e. solves (2.55), then λ̄ is a

feasible vector for QP2 which satisfies the related KKT conditions (2.64). Reminding that A† is

SPS by assumption, so that BA†BT is also SPS, we can conclude that λ̄ solves QP2. Moreover,

we have shown that any solution x̄ of QP1 can be obtained using the formula (2.58) from a KKT

pair (λ̄, ᾱ) of QP2 (2.54a).

2.4

Examples

This section presents several examples how the particular QP transforms can be used for different

types of QP. We make use of the introduced notation with minimal comments. We do not make

references to any particular solver here, instead we denote by Solve some solver which is able

to carry out the solution of the given QP.

2.4.1 Equality constrained QP

(a) HomogenizeEq and PreconditionByP

The equality constraints can be eliminated with the HomogenizeEq transform of Section 2.3.3

and the PreconditionByP transform of Section 2.3.6. The resulting QP can be solved by any

solver for unconstrained minimization, i.e. any SPS linear system solver.

QP1 = QP[A, b | BE , cE | ���, ��� | ���, ���];

QP2 = HomogenizeEq(QP1)

= QP[A, b−Ax̃ | BE , o | ���, ��� | ���, ���],

28 2 QP transforms

where

x̃ = BR
EcE ;

QP3 = PreconditionByP(QP2)

= QP[PAP, P(b−Ax̃) | ���, ��� | ���, ��� | ���, ���],

where

P = I−BR
EBE ;

QP3 = Solve(QP3)

= QP[x̄ | ��� | ��� | ���, ���];

QP2 = PreconditionByP(QP3)

= QP[Px̄ | (BT
E)

L(b−Ax̄) | ��� | ���, ���];

QP1 = HomogenizeEq(QP2)

= QP[Px̄+ x̃ | (BT
E)

L(b−Ax̄) | ��� | ���, ���].

(b) PenalizeEq

The equality constraints can be enforced by embedding them into the Hessian with the PenalizeEq

transform of Section 2.3.4. The resulting QP can be solved by any solver for unconstrained min-

imization, i.e. any SPS linear system solver. This is simpler to implement then (a) but we get

only an approximate KKT pair whose error depends on the penalty ρ and spectral properties of

A and BE , see Section 2.3.4.

QP1 = QP[A, b | BE , cE | ���, ��� | ���, ���];

QP2 = PenalizeEq(QP1)

= QP[A+ ρBT
EBE , b+ ρBT

EcE | ���, ��� | ���, ��� | ���, ���],

where

ρ > 0;

QP2 = Solve(QP2)

= QP[x̄ | ��� | ��� | ���, ���];

QP1 = PenalizeEq(QP2)

2.4 Examples 29

= QP[x̄ | ρ(BE x̄− c) | ��� | ���, ���].

To circumvent the need for a proper penalty ρ and for sake of robustness, the PenalizeEq

transform can be replaced by the more sophisticated algorithm of Section 3.2 which applies the

penalty method in the loop with progressive correction of λE.

(c) Dualize

Dualization embeds the primal constraints into the dual Hessian. The dual Hessian has the size

equal to the number of rows of BE , and is typically better conditioned than the primal one.

A is SPD. In case A is SPD, the dual problem is unconstrained and can be solved by any

solver for unconstrained minimization, i.e. any SPS linear system solver.

QP1 = QP[A, b | BE , cE | ���, ��� | ���, ���];

QP2 = Dualize(QP1)

= QP[BEA
−1BT

E , BEA
−1b− cE | ���, ��� | ���, ��� | ���, ���];

QP2 = Solve(QP2)

= QP[λ̄E | ��� | ��� | ���, ���];

QP1 = QP[A−1(b−BT λ̄E) | λ̄E | ��� | ���, ���].

A is SPS. If A is only SPS, then the dual problem is equality constrained, since the dual

equality constraints arise in the form RTBT
E = RTb, where columns of R form a base of KerA.

In this case, the dual QP can be solved by any solver able to solve this kind of problems, or the

previous approaches (a) or (b) can be applied to eliminate the equality constraints.

QP1 = QP[A, b | BE , cE | ���, ��� | ���, ���];

QP2 = Dualize(QP1)

= QP[BEA
†BT

E , BEA
†b− cE | RTBT

E , RTb | ���, ��� | ���, ���];

QP2 =

{
Solve(QP2),

or apply approach (a) or (b)

}

30 2 QP transforms

= QP[λ̄E | ᾱ | ��� | ���, ���];

QP1 = QP[A†(b−BT λ̄E)−Rᾱ | λ̄E | ��� | ���, ���].

Note that the SPD case can be considered a special case of the SPS case with R = ���.

2.4.2 Bound constrained QP

(a) Dualize

For bound constrained QP, the dimension of the dual Hessian is equal to the number of con-

strained variables, so this approach can be efficient when this number is much lower than the

dimension of A. We will deal only with the case when A is SPD. Then the dual formulation

contains only partial bound constraints. The primal bound constraints can be converted to

general linear inequality constraints Bx ≤ −ℓ, where

B =
[
−I(|I|,|I|) O(|I|,n−|I|)

]
.

QP1 = QP[A, b | ���, ��� | ���, ��� | ℓ, ���, I];

QP2 = Dualize(QP1)

= QP[BA−1BT , BA−1b− c | ���, ��� | ���, ��� | o, ���]

= QP[[A−1]I,I , cI − [A−1]I,∗b | ���, ��� | ���, ��� | o, ���];

QP2 = Solve(QP2)

= QP[λ̄ℓ | ��� | ��� | ���, ���];

QP1 = QP[A−1(b−BT λ̄ℓ) | λ̄ℓ | ��� | ���, ���].

The arising submatrices of A−1 can be expressed using the related Schur complement as

[A−1]I,I =
(
AI,I −AI,RA

−1
R,RA

T
I,R

)−1
, (2.67)

[A−1]I,∗ =
[
[A−1]I,I , −[A−1]I,I(A

−1
R,RA

T
I,R)

T
]
, (2.68)

where R denotes the index set for which I ∪R = (1, . . . , n), I ∩R = ∅. This form can be useful

when |I| << |R| as then the matrix A−1
R,RA

T
I,R, appearing in both (2.67) and (2.68), may be

explicitly assembled by solving a linear system with |I| right hand sides.

2.4 Examples 31

2.4.3 Bound and equality constrained QP

(a) PenalizeEq

The equality constraints can be enforced by embedding them into the Hessian with the PenalizeEq

transform of Section 2.3.4. The resulting QP can be solved by any solver for bound constrained

minimization. We get only an approximate KKT pair whose error depends on the penalty ρ and

spectral properties of A and BE , see Section 2.3.4.

QP1 = QP[A, b | BE , cE | ���, ��� | ℓ, ���, I];

QP2 = PenalizeEq(QP1)

= QP[A+ ρBT
EBE , b+ ρBT

EcE | ���, ��� | ���, ��� | ℓ, ���, I],

where

ρ > 0;

QP2 = Solve(QP2)

= QP[x̄ | ��� | ��� | λ̄ℓ, ���, I];

QP1 = PenalizeEq(QP2)

= QP[x̄ | ρ(BE x̄− c) | ��� | λ̄ℓ, ���, I].

2.4.4 General QP

Dualization embeds the primal constraints into the dual Hessian. The dual Hessian has the size

equal to the number of rows of BE , and is typically better conditioned than the primal one.

In case A is SPD, the dual problem is bound constrained. If A is only SPS, then the dual

problem is bound and equality constrained, since the dual equality constraints arise in the form

RTBT
E = RTb, where columns of R form a base of KerA.

QP1 = QP[A, b | BE , cE | BI , cI | ℓ, u, I];

QP2 = EliminateBox(QP1)

= QP[A, b | BE , cE | B̃I , c̃I | ���, ���],

where

p = |I|, JI = (1, . . . ,mI),

Jℓ = (mI + 1, . . . ,mI + |I|), Ju = (mI + |I|+ 1, . . . ,mI + 2|I|),

J = JI ∪ Jℓ ∪ Ju,

32 2 QP transforms

B̃I =




BI

−I(p,p) O(p,n−p)

I(p,p) O(p,n−p)


 ∈ R

|J |×n, c̃I =




cI

−ℓI

uI


 ∈ R

|J |;

QP3 = Dualize(QP2)

= QP[F, d | G, e | ���, ��� | o, ���, J],

where

E = (|J |+ 1, . . . , |J |+mE),

B =

[
B̃I

BE

]
∈ R

(|J |+|E|)×n, c =

[
c̃I

cE

]
∈ R

(|J |+|E|),

F = BA†BT , d = BA†b− c,

G = RTBT , e = RTb;

QP4 = HomogenizeEq(QP3)

= QP[F, d̃ | G, o | ���, ��� | − λ̃, ���, J],

where

λ̃ = GRe, d̃ = d− Fλ̃;

QP5 = PreconditionByP(QP4)

= QP[PFF, Pd̃ | G, o | ���, ��� | − λ̃, ���, J],

where

P = I−GRG;

QP6 = PenalizeEq(QP5)

= QP[H, Pd̃ | ���, ��� | ���, ��� | − λ̃, ���, J],

where

H = PFP+ ρGTG;

QP6 = Solve(QP6)

= QP[λ̂ | ��� | ��� | β̄, ���, J],

where

β̄ =
[
Hλ̂−Pd̃

]
J
;

QP5 = PenalizeEq(QP6)

2.4 Examples 33

= QP[λ̂ | α̂ | ��� | β̄, ���, J],

where

α̂ = ρGλ̂;

QP4 = PreconditionByP(QP5)

= QP[λ̂ | ᾱ | ��� | β̄, ���, J],

where

ᾱ = α̂+ (GT)L(d̃− Fλ̂);

QP3 = HomogenizeEq(QP4)

= QP[λ̄ | ᾱ | ��� | β̄, ���, J];

where

λ̄ = λ̃+ λ̂;

QP2 = Dualize(QP3)

= QP[x̄ | λ̄E | λ̃I | ���, ���],

where

x̄ = A†(b−BT λ̄)−Rᾱ,

λ̄E = [λ̄]E , λ̃I = [λ̄]J ;

QP1 = EliminateBox(QP2)

= QP[x̄ | λ̄E | λ̄I | λ̄ℓ, λ̄u, I].

where

λ̄I = [λ̃I]JI
, λ̄ℓ = [λ̃I]Jℓ

, λ̄u = [λ̃I]Ju ,

Notes

1. The procedure above remains of course valid for a special case of SPD A. In this case

A† = A−1, R = ��� and hence (G, e) = (���,���), and the transforms HomogenizeEq,

PreconditionByP and PenalizeEq reduce to identity mappings, i.e. QP6 = QP5 =

QP4 = QP3.

2. Use of PreconditionByP is optional but recommended. If only the equality constraints

are present (non-empty), this transform already enforces them, see Section 2.3.6 and (a)

34 2 QP transforms

in Section 2.4.1; it anyway shrinks the spectrum of the Hessian and simplifies optimal

penalization [12].

3. The procedure above allows to solve arbitrary QP, including all the previous special cases,

requiring only a solver for bound constrained minimization if any kind of inequality con-

straints are prescribed, and a solver for unconstrained minimization, i.e. an SPS linear

system solver, otherwise.

4. To circumvent the need of a proper penalty ρ and for sake of robustness, the PenalizeEq

transform can be replaced by the more sophisticated algorithm of Section 3.2 which applies

the penalty method in the loop with progressive correction of λE .

5. We will show in Section 4.5 that FETI DDM for both linear and contact problems can be

viewed as specializations of the procedure above only with a specific structure of the input

data and implementation of the generalized inverse.

35

CHAPTER III

QP algorithms

This chapter focuses on two key algorithms implemented in PermonQP (Section 7.4): MPRGP

for bound constrained QP and SMALBE for bound and equality constrained QP. These algo-

rithms were proposed by Dostál [10]. Their main ideas are presented in the first two sections.

The final section presents the author’s modifications dealing with issues connected with the

termination phase of SMALBE-M.

3.1

MPRGP algorithm

MPRGP (Modified Proportioning and Reduced Gradient Projection) [10, 15, 24] is an efficient

algorithm for solution of the convex QP with simple bounds

min
1

2
xTAx− bTx s.t. xI ≥ ℓ. (3.1)

The bounds can be only partial (Section 1.5), I denotes the index set specifying the solution

indices where the bounds are applied. MPRGP can be considered a modification of the Polyak

algorithm using active sets. The proportioning algorithm is combined with the gradient pro-

jections, a test to decide when to leave the active set, and three types of steps to generate a

sequence of iterates xk approximating the solution:

1. proportioning step – removes indices from the active set,

2. conjugate gradient (CG) step – generates the next approximation in the active set if the

current approximation is proportional (i.e. meeting a special criterion related to chopped,

free and reduced free gradients, see [10]),

36 3 QP algorithms

3. expansion step – defined by the free gradient projection with a fixed steplength ᾱ, expands

the active set.

Instead of verifying the KKT conditions directly, the algorithm evaluates the projected gradient

gP , given componentwise by

gP
i =




gi for xi > li or i 6∈ I,

min (gi, 0) for xi = li and i ∈ I,
(3.2)

where xi and li is the i-th component of x and ℓ, respectively, and g = Ax− b is the gradient

of the objective function. The algorithm stops, when ||gP || is sufficiently small. MPRGP has

a known rate of convergence given in terms of the spectral condition number of the Hessian,

comparable to that of Conjugate Gradients applied to the corresponding unconstrained QP [10].

3.2

SMALBE algorithm

SMALBE (Semi-Monotonic Augmented Lagrangian with Bound and Equality) [10] is a variant

of the inexact augmented Lagrangian algorithm. It can be used to solve a bound and equality

constrained QP

min
1

2
xTAx− bTx s.t. xI ≥ ℓ and BEx = o. (3.3)

Particularly, the dual QP of the general QP (1.5) takes this form, as discussed in Section 2.3.7.

The SMALBE algorithm is based on the outer loop refining the equality constraint Lagrange

multipliers λE .

In each outer iteration, the inner loop solving an auxiliary minimization problem

min
x

L(x,λE , ρ) s.t. xI ≥ ℓ (3.4)

is performed, where L is the augmented Lagrangian defined as

L(x,λE , ρ) =
1

2
xTAx− bTx+ λT

EBEx+
ρ

2
||BEx||

2.

Using just a different bracketing, the inner problem (3.4) is a QP with the penalized Hessian

(A+ ρBT
EBE) and updated RHS (b−BT

EλE),

min
x

1

2
xT (A+ ρBT

EBE)x− (b−BT
EλE)

Tx s.t. xI ≥ ℓ. (3.5)

The outer loop also conditionally updates the M parameter (SMALBE-M) or the penalty ρ

(SMALBE-ρ) based on the increase of L with respect to λE. SMALBE-M is generally preferred

as it uses a fixed ρ and hence the Hessian and its spectrum is not altered. M is divided by the

3.2 SMALBE algorithm 37

Algorithm 1 Semi-monotonic augmented Lagrangian method for bound and equality con-

strained problems with update of M (SMALBE-M).

Require: ε > 0, η > 0, β > 1, M0 > 0, ρ > 0, x0

Ensure: x̄ = argmin 1

2
xTAx− bTx s.t. x ≥ ℓ and BEx = o

1: λ0
E
= o; M1 = M0 {initialization}

2: for k = 1, 2, . . . do

3: λk

E
= λk−1

E
+ ρBEx

k−1 {update Lagrange multipliers}

4: find xk ≥ ℓ such that

max
{
||gP (xk,λk

E
, ρ)||, ||BEx

k||
}
< ε||b||,

or ||gP (xk,λk

E
, ρ)|| < min

{
Mk||BEx

k||, η
}
,

starting with xk−1

{solve the inner bound constrained QP (3.5) with adaptive precision}

5: if max
{
||gP (xk,λk

E
, ρ)||, ||BEx

k||
}
< ε||b|| then

6: return x̄ = xk {solution found, return}

7: end if

8: if L(xk,λk

E
, ρ) < L(xk−1,λk−1

E
, ρ) + ρ||BEx

k||2/2 then

9: Mk+1 = Mk/β {update the balancing parameter M}

10: else

11: Mk+1 = Mk

12: end if

13: end for

update constant β > 1 if the increase of L with respect to λE is not sufficient. The SMALBE-M

algorithm for bound and equality constrained QP is presented here as Algorithm 1.

The inner loop (Line 4 in Algorithm 1) may be implemented by any algorithm which is able

to solve the bound constrained QP (3.5), such as MPRGP (Section 3.1). The inner solver has

to obey the special stopping criterion (also shown in Line 4) assessing the norm of the projected

gradient gP (3.2), obtained now from the gradient of L with respect to x

g(x,λE , ρ) = (A+ ρBT
EBE)x− (b−BT

EλE). (3.6)

Algorithm 1 is a slightly modified version of Algorithm 6.2 in [10]. First of all, the update of

the Lagrange multipliers in line 3 has been moved to the beginning of the loop. This modification

has two advantages: (1) x0 is a parameter whereas λ0
E is given which is more natural, (2) only

two generations of λE at a time are needed (easier implementation).

Furthermore, the stopping criterion in line 4 is specified more in detail here because it is

important to stop the inner loop if the solution of the original (“outer”) QP is already found. In

[10], the full stopping criterion is discussed separately in Section 6.10. However, we intentionally

do not mention here the part of the stopping criterion checking whether the projected gradient

gP alone has already reached the desired precision,

or ||gP (xk,λk
E, ρ)|| < ε||b||, (3.7)

38 3 QP algorithms

because it has turned out to be troublesome and should be handled carefully. We will discuss

these issues and propose solution in Section 3.3.

Here we give hints of “reasonable” values of the parameters:

ε ∈ [10−10, 10−5] (required tolerance),

η = mη||b||, mη ∈ [10−2, 100],

β ∈ [2, 10],

M0 = mM ||A||, mM ∈ [10−1, 103],

ρ = mρ||A||, mρ ∈ [1, 10].

Compared to the basic penalty method, SMALBE is able to find an approximate KKT pair

meeting the given precision with no need for a large penalty, avoiding ill-conditioning. Compared

to the basic augmented Lagrangian method, the introduced adaptivity weakens the need of the

proper selection of the penalty sequence and eliminates necessity of exact solution of the inner

problems. Optimality results were presented in [10, 13, 16, 17].

3.3

SMALBE-M with improved termination phase

The basic form of SMALBE-M (Algorithm 1, Section 3.2) has a hidden imperfection, revealed

by experimenting with our PERMON solvers (Chapter 7). Let us show this issue on a small

problem of elastic cube generated by PermonCube (Section 7.1). Figure 3.1 shows the progress

of ||gP || and ||BEx||. We can see the solution approximation xk satisfying

max
{
||gP (xk,λk

E , ρ)||, ||BEx
k||

}
< ε||b||

is found much later than the approximation xj, j < k, satisfying just

||gP (xj ,λj
E , ρ)|| < ε||b||.

Let us now add a standalone stopping criterion

||gP (xk,λk
E , ρ)|| < ε||b||

to the algorithm and denote by K the first index for which the relation becomes true. In

Figure 3.2, we can see it is not suitable to include this criterion without any special handling.

In each outer iteration with the index greater than K, the inner solver performs only one step of

MPRGP and stops because the criterion is met again. The result is the inner solver makes not

enough iterations to reduce the equality constraint violation norm ||BEx|| after the update of

the multipliers λE in the outer loop. Thus ||BEx|| decreases only very slowly. To get it under

the desired tolerance, even more total inner iterations then before are needed.

3.3 SMALBE-M with improved termination phase 39

Let us try to resolve this issue by enforcing some minimal number of inner steps N after

reaching the desired tolerance with the gradient. Figures 3.3 to 3.5 show the resulting behaviour.

With the N = 20 (Figure 3.5), we have already got a slightly better result compared to the

basic approach of Figure 3.1. However, the improvement is not convincing and the optimal N

is problem-specific.

There is a tool that we have not exploited so far – update of the penalty ρ. Although it

worsens the condition number of the penalized Hessian, it is valuable in situations when the

decrease of ||BEx|| needs to be accelerated. It is a good idea to start to increase ρ as late as

in the K-th step, and do it carefully with a reasonable update factor β. Figure 3.6 presents

behaviour of the algorithm for β = 2. We can see that with this setting, ||gP || starts to slightly

oscillate around the value of ε, and ||BEx|| decreases rapidly to this value, taking just a few

further iterations with k > K.

Is is also advisable to limit the number of outer iterations to some finite value kmax to avoid an

infinite loop in pathological cases. We have always used kmax = 100. The parameter M should

never decrease below the value E/ε where E is the “machine epsilon”1 and we recommend to

bound it with this value or greater. The resulting algorithm with the late update of the penalty

and with the limits discussed above is presented here as Algorithm 2.

1
E ≈ 1.11 × 1016 for double precision.

40 3 QP algorithms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.1: The issue of the late termination.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.2: The issue caused by the criterion ||gP (xk,λk
E , ρ)|| < ε||b||.

3.3 SMALBE-M with improved termination phase 41

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.3: Behaviour of ||BEx|| for the minimal number of inner steps N = 5.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.4: Progress for N = 10.

42 3 QP algorithms

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.5: Progress for N = 20.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

15

20

25

30

35

40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

o
u

te
r
 i

te
ra

t
io

n

inner iteration

||g|| ||Bx|| rel.tol. M outer iteration

Figure 3.6: The issue is resolved with the late update of penalty.

3.3 SMALBE-M with improved termination phase 43

Algorithm 2 SMALBE-M with improved termination

Require: x0, λ0
E , ε > 0, η > 0, kmax > 0,

M0 > 0, βM > 1, Mmin ∈ (0, 1),

ρ0 > 0, βρ > 1

Ensure: x̄ = argmin 1
2x

TAx− bTx s.t. x ≥ ℓ and BEx = o

1: λ0
E = o; ρ1 = ρ0; M1 = M0 {initialization}

2: S = 1 {set state to 1}

3: for k = 1, 2, . . . , kmax do

4: λk
E = λk−1

E + ρk−1BEx
k−1 {update Lagrange multipliers}

5: find xk ≥ ℓ such that

max
{
||gP (xk,λk

E , ρk)||, ||BEx
k||

}
< ε||b||,

or ||gP (xk,λk
E , ρk)|| < max

{
min

{
Mk||BEx

k||, η
}
, ε||b||

}
,

starting with xk−1

{solve the inner bound constrained QP with adaptive precision}

6: if max
{
||gP (xk,λk

E , ρk)||, ||BEx
k||

}
< ε||b|| then

7: return x̄ = xk {solution found, return}

8: end if

9: if ||gP (xk,λk
E , ρk)|| < ε||b|| then

10: S = 3 {change state to 3}

11: end if

12: if S == 1 then

13: if L(xk,λk
E , ρk) < L(xk−1,λk−1

E , ρk−1) + ρk||BEx
k||2/2 then

14: Mk+1 = Mk/βM {update the balancing parameter M}

15: else

16: Mk+1 = Mk

17: end if

18: if Mk+1/β < Mmin then

19: S = 2 {change state to 2}

20: end if

ρk+1 = ρk {ρ is not updated in state 1}

21: else if S == 2 then

22: Mk+1 = Mk; ρk+1 = ρk {nothing is updated in state 2}

23: else if S == 3 then

24: Mk+1 = Mk {M is not updated in state 3}

25: ρk+1 = βρρk {update the penalty ρ unconditionally}

26: end if

27: end for

45

CHAPTER IV

TFETI DDM

FEM simulations with a large enough number of variables are not solvable on usual personal

computers due to memory and computational limits. Such problems can be solved only on par-

allel computers. Suitable numerical methods are needed for that such as domain decomposition

methods (DDMs) or multigrid. DDMs provide a very natural way of parallelism as they solve the

original problem by decomposing (“tearing”) into smaller independent subdomain problems. A

DDM basically constitutes a mathematical framework how to get a correct solution, continuous

across subdomain interfaces, in presence of such tearing.

Finite Element Tearing and Interconnecting (FETI) methods form a successful subclass of

DDMs. They belong to non-overlapping methods and combine iterative and direct solvers.

The FETI methods allow highly accurate computations scaling up to tens of thousands of

processors and billions of unknowns. In FETI, subdomain stiffness matrices are assembled

and factorized independently, and so are the subsequent triangular systems solved, whereas

conditions of continuity of the solution across subdomain interfaces (gluing conditions) form

separate linear equality constraints which couple the subdomains’ solutions in a neigbour-wise

manner. In the specific flavour of FETI we typically use, called Total FETI (TFETI), Dirichlet

boundary conditions are enforced by means of equality constraints, too. Hence, even in case

of linear elasticity, it is advantageous to handle the resulting problem as a special case of QP

(equality constrained).

This chapter serves as a brief introduction to the DDMs of the FETI type. It is mostly

compilation but presents a new view on FETI as a chain of QP transforms in Section 4.5.

46 4 TFETI DDM

4.1

Non-overlapping domain decomposition

Non-overlapping DDMs are based on decomposing the original spatial domain into non-overlapping

subdomains. A non-overlapping DDM consists of three basic parts:

1. the meshing part,

2. the assembly part,

3. the algebraic part.

For a very nice overview of non-overlapping DDMs, see [26].

4.1.1 Meshing part

Parallel mesh generation of the complex geometry is one of the open problems from the last

decade. There are two basic approaches [84]:

1. Parallelize directly the mesh generation algorithm.

2. Decompose the geometry into partitions, for each partition use a sequential mesh generator.

An obvious advantage of the second approach is that existing high quality sequential meshers

such as Netgen (see Section 6.1.1) can be used. More about this topic together with a survey of

existing codes implementing parallel mesh generation can be found in [84].

For non-overlapping DDMs, the submeshes of the global mesh are handled completely sepa-

rately; there are neither overlapping cells nor a ghost-layer. The degrees of freedom (DOFs) on

submesh interfaces are duplicated into each intersecting submesh, i.e. each submesh is “com-

plete” and “self-contained”. Volume meshing can then be done completely separately for each

submesh.

4.1.2 Conformity conditions

We restrict ourselves to the case of element-oriented domain decompositions (each element be-

longs to one and only one subdomain) which are conforming to the mesh, satisfying these

conformity conditions [26, 63]:

• there is a one-to-one correspondence between DOFs along the subdomain interfaces;

• approximation spaces are the same along the subdomain interfaces;

• FE models (beam, shell etc.) are the same along the subdomain interfaces.

4.2 FETI methods 47

4.1.3 DOF numberings

Let us introduce several DOF numberings, useful for further discussions:

1. global – a unique global DOF numbering before the DOF duplication connected with the

non-overlapping domain decomposition,

2. local – after the decomposition and DOF duplication, DOFs of each subdomain are num-

bered starting from 0 independently of other subdomains,

3. interface – similar to local, but only the DOFs residing on subdomain interfaces are num-

bered.

4.1.4 Assembly part

The second part, the assembly of algebraic objects, is done completely separately for each

submesh. The stiffness matrix and load vector resulting from a submesh form a “local problem”.

The local problems are independent so that the global stiffness matrix is block-diagonal. Thus

the assembly process can be done by any sequential FEM code for all submeshes at once in

parallel.

4.1.5 Algebraic part

The final “algebraic” part is essentially a mathematical approach how to deal with the non-

overlapping mesh decomposition described above. This part is what is actually typically called

DDM. To “glue” the subdomains together, a mapping between interfaces is needed. If the

conformity conditions of Section 4.1.2 have been met in the meshing part, this mapping is just

a many-to-one mapping from the interface numbering to the global numbering. We call it local-

to-global mapping (l2g). This is a minimal additional information needed by the DDM solver in

contrast to mainstream linear system solvers. The mainstream solvers work with the monolithic

global stiffness matrix coming from the “undecomposed” mesh, and their parallelization consists

in use of a distributed matrix storage (e.g. MPIAIJ in PETSc) for the stiffness matrix.

4.2

FETI methods

The class of methods called FETI (Finite Element Tearing and Interconnecting) turned out

to be one of the most successful for parallel solution of elliptic partial differential equations

arising from many engineering problems. FETI methods use dual formulation. In the origi-

nal primal problem, the unknowns represent displacements, and “gluing” equality constraints

express connectivity between subdomains. Elimination of the primal variables reduces the orig-

inal problem to a smaller, better conditioned one. Its unknowns are Lagrange multipliers of

48 4 TFETI DDM

the above-mentioned “gluing” constraints. These multipliers “glue together” the subdomains so

that the computed primal displacements are continuous across the subdomain interfaces.

FETI-1 [20, 21] is a non-overlapping domain decomposition method. The original FETI-1

method assumes that the boundary subdomains inherit Dirichlet conditions from the original

problem where the conditions are embedded into the linear system arising from FEM. This

actually means that subdomains whose interfaces intersect the Dirichlet boundary are fixed

while others are kept floating; in the linear algebra speech, the corresponding subdomain stiffness

matrices are non-singular and singular, respectively. Dimensions of kernels of subdomain stiffness

matrices may vary from zero to a certain positive maximum. They correspond to two extremes:

boundary subdomains with sufficient Dirichlet data to fix their rigid body motions, and to freely

floating subdomains, respectively.

The basic idea of the Total-FETI (TFETI) method [86, 8, 88, 94] is to keep all the subdo-

mains floating and enforce the Dirichlet boundary conditions by means of a constraint matrix

and Lagrange multipliers, similarly to the above-mentioned gluing conditions. This simplifies

implementation of Dirichlet conditions as well as the stiffness matrix pseudoinverse. The key

point is that kernels of subdomain stiffness matrices are known a priori, have the same dimen-

sion and can be formed without any computation from the mesh data. Furthermore, each local

stiffness matrix can be regularized cheaply, and the inverse of the resulting nonsingular matrix

is at the same time a pseudoinverse of the original singular one [5, 9, 39].

A contact problem of mechanics leads to a primal QP with linear inequality constraints,

representing non-penetration conditions. If the dualization, being part of the FETI procedure,

is applied, then these general linear inequality constraints are transformed into simple lower

bound constraints which allow use of specialized QP solvers for this type of problems. We

combine the TFETI method [8] with optimal QP algorithms by Dostál et al [10, 11, 17]. A

unique feature of this approach is theoretically supported numerical scalability and high parallel

scalability.

4.3

TFETI for linear elasticity

Let us consider a partitioning of the global domain Ω into NS subdomains Ωs. Using subdomain-

wise FE discretization, we get subdomain stiffness matrices Ks ∈ R
ns×ns and subdomain load

vectors f s ∈ R
ns , where ns denotes number of DOFs within the submesh corresponding to the

subdomain Ωs. Our goal is to find unknown displacements us ∈ R
ns of each subdomain. The

global stiffness matrix K, global load vector f and global displacement vector u then possess

4.3 TFETI for linear elasticity 49

the following layout

K =




K1

. . .

KNS


 ∈ R

n×n, f =




f1

...

fNS


 ∈ R

n, u =




u1

...

uNS


 ∈ R

n. (4.1)

Here, n =
∑NS

s=1 ns stands for the global number of DOFs of the decomposed problem, including

DOFs duplicated across subdomain interfaces. This count is called primal dimension. Note that

the block-diagonal layout of K is the main source of parallelism within the FETI methods.

In case of the conformal domain decomposition (see Section 4.1.2), connectivity of the sub-

domains can be prescribed easily with the interface compatibility (“gluing”) condition

Bgu = o, (4.2)

where Bg ∈ R
mg×n is a signed Boolean matrix, consisting again of subdomain-wise blocks Bs

g,

Bg =
[
B1

g . . . BNS
g

]
. (4.3)

Note that for non-conformal domain decomposition, we can proceed similarly using mortar

methods [82] but the matrix Bg will no longer be signed Boolean and will contain substantially

more nonzeros.

Using the TFETI approach, the subdomains coinciding with the Dirichlet boundary are

treated as floating, their stiffness matrices are not modified in the FEM phase and remain

singular, and “gluing to the Dirichlet boundary” is prescribed in the same way as the gluing

condition above,

Bdu = cd, (4.4)

where Bd =
[
B1

d . . . BNS
d

]
∈ R

md×n is a Boolean matrix and cTd =
[
(c1d)

T . . . (cNS
d)T

]
∈

R
md contains prescribed displacements on the Dirichlet boundary. Obviously, Bs

d 6= O if and

only if Ωs intersects with the Dirichlet boundary. We can rewrite the two conditions (4.3) and

(4.4) into one,

Bu = c, (4.5)

where

B =

[
Bg

Bd

]
∈ R

m×n, c =

[
o(mg)

cd

]
∈ R

m, m = mg +md.

The total number of scalar constraints m is called dual dimension. Note that any other types

of equality constraints, e.g. multipoint constraints [41], can be handled analogously.

Discretization and decomposition process discussed above leads to the primal QP

min
1

2
uTKu− fTu s.t. Bu = c. (4.6)

50 4 TFETI DDM

We can write the Lagrangian associated with the problem (4.6) as

L(u,λ) =
1

2
uTKu− fTu+ λTBu, (4.7)

where λ =
[
λg

λd

]
∈ R

m is a vector of unknown Lagrange multipliers with subvectors λg ∈ R
mg

and λd ∈ R
md corresponding to gluing conditions and Dirichlet conditions, respectively. It is

well known that (4.6) is equivalent to the saddle point problem

(ū, λ̄) = arg inf
u

sup
λ

L(u,λ). (4.8)

After eliminating the primal variables u, we get the dual minimization problem

minΘ(λ) s.t. RT (f −BTλ) = o, (4.9)

where

Θ(λ) =
1

2
λTBK†BTλ− λTBK†f .

Let us remind that K† denotes a generalized inverse that satisfies KK†K = K.

The block-diagonal matrix R consists of subdomain-wise blocks Rs. For each s = 1, . . . , NS ,

columns of Rs ∈ R
ns×ds form a base of the kernel of the subdomain stiffness matrix Ks, where

ds is the dimension of the kernel. The global matrix R ∈ R
n×d, d =

∑NS
s=1 ds, inherits this

property, i.e. columns of the matrix R form a base of the kernel of K with the dimension d. The

local kernel dimension ds can be e.g. for Poisson problem ds = 1, for a problem of 2D elasticity

ds = 3, and for a problem 3D elasticity ds = 6, provided TFETI is used and the decomposition

has produced only simply connected domains.

Let us denote

F = BK†BT , G = RTBT , e = RT f , d̃ = BK†f .

The problem (4.9) in the new notation reads

min
1

2
λTFλ− λT d̃ s.t Gλ = e. (4.10)

We can now proceed by homogenizing the equality constraints, i.e. transform the problem

(4.10) to minimization on the kernel of G. Let λ̃ satisfy

Gλ̃ = e. (4.11)

It is natural, though not necessary, to use the least-square solution

λ̃ = GRe. (4.12)

The solution of (4.10) can then be sought in the form

λ = µ+ λ̃. (4.13)

4.4 TFETI for frictionless contact problems 51

Since
1

2
λTFλ− λT d̃ =

1

2
µTFµ− µT (d̃− Fλ̃) +

1

2
λ̃TFλ̃− λ̃T d̃,

and the last two terms are constant with respect to µ, the problem (4.10) is equivalent to

min
1

2
µTFµ− µTd s.t Gµ = o, (4.14)

where d = d̃− Fλ̃. Let us return to the old notation, λ := µ.

Our final step is based on observation that the problem (4.14) is equivalent to

min
1

2
λTPFPλ− λTPd s.t. Gλ = o, (4.15)

where

Q = GT (GGT)−1G and P = I−Q

are orthogonal projectors onto ImGT and KerG, respectively. Within the FETI methodology,

KerG is called natural coarse space, and the action of (GGT)−1 is called coarse problem.

Note that in this case of equality constrained QP, the introduction of the projector P causes

λ ∈ KerG, i.e. the homogeneous equality constraints are automatically satisfied. Hence, we get

unconstrained QP which is equivalent to the linear system

PFPλ = Pd. (4.16)

This final problem can be solved with an arbitrary linear system solver. If a Krylov subspace

method is used, then the right P in the Hessian can be omitted. The conjugate gradient method

is a good choice thanks to the classical estimate by Farhat, Mandel and Roux of the spectral

condition number [20], which holds unchanged for TFETI:

κ(PFP|ImP) ≤ C
H

h
, (4.17)

where h is the discretization parameter (indirect measure of the problem size) and H is the

decomposition parameter (indirect measure of the number of subdomains).

4.4

TFETI for frictionless contact problems

The TFETI method can be extended with relative ease to allow solution of contact problems.

First of all, there is an additional linearized contact non-penetration condition

Bcu ≤ cc, (4.18)

52 4 TFETI DDM

with the related Lagrange multipliers λc. We can incorporate Bc into B, cc into c, and λc

into λ and denote by E and I index sets corresponding to rows with equalities and inequalities,

respectively. Namely,

B =


BE

BI


 =




Bg

Bd

Bc


 ∈ R

m×n, c =


cE
cI


 =




cg

cd

cc


 ∈ R

m, λ =


λE

λI


 =




λg

λd

λc


 ∈ R

m, (4.19)

with modified dual dimension m = mg +md +mc. We then proceed analogously to Section 4.3,

substituting this altered B and taking into account that BI corresponds to inequalities. The

primal QP (4.6) then reads

min
1

2
uTKu− fTu s.t. BEu = cE and BIu ≤ cI . (4.20)

Thanks to the notation, the related Lagrangian (4.7) remains formally unchanged. The saddle

point formulation (4.8) must include the dual feasibility condition λI ≥ o from (1.15c),

(ū, λ̄) = arg inf
u

sup
λI≥o

L(u,λ). (4.21)

This bound propagates to the dual formulation (4.10),

min
1

2
λTFλ− λT d̃ s.t Gλ = e and λI ≥ o. (4.22)

After homogenization, returning to the original notation, and employing the orthogonal projec-

tors, we finally get minimization on the subset of KerG analogous to (4.15),

min
1

2
λTPFPλ− λTPd s.t. Gλ = o and λI ≥ ℓ, (4.23)

where ℓ = −λ̃I .

The estimate (4.17) remains valid for the resulting QP (4.23). Note also that the problem

(4.6) can be considered a special case of the problem (4.20) with (Bc, cc) = (���,���) and empty

index set I. The same holds for the final formulations (4.16) and (4.23).

The final QP (4.23) can be solved by combination of the SMALBE algorithm of Section 3.2,

and the MPRGP algorithm of Section 3.1.

4.5

TFETI as a sequence of QP transforms

The TFETI method can be expressed in terms of QP transforms introduced in Chapter 2 as a

specific instance of the procedure of Section 2.4.4 with

QP1 = QP[K, f |
[
Bg

Bd

]
,
[
o
(mg)

cd

]
| Bc, cc | ���, ���], (4.24)

4.5 TFETI as a sequence of QP transforms 53

QP1 = QP[u |
[
λg

λd

]
| λc | ���, ���]. (4.25)

Herewith, we can easily follow how the KKT pair of the original primal QP (4.20) is recovered

from the KKT pair (λ̂, α̂) of the last QP (4.23). It follows from Section 2.4.4 that the KKT

pair (λ̄, ᾱ) of the original dual problem (4.22) is derived from (λ̂, α̂) as

ᾱ = α̂+ (GT)L(d− Fλ̂), (4.26)

λ̄ = λ̃+ λ̂, (4.27)

and the primal KKT pair is (ū, λ̄) where

ū = K†(f −BT λ̄)−Rᾱ. (4.28)

55

CHAPTER V

Implicit equality constraint

orhonormalization

This chapter presents a simple but powerful ingredient for massively parallel solution of varia-

tional inequalities with equality constraints using augmented Lagrangian methods. It has been

discovered within joint effort with Alexandros Markopoulos. A paper on this topic is currently

under preparation [102].

In the following sections, we discuss how we can take advantage of B̃E with orthonormal

rows in TFETI QP transforms (Section 4.5) and the SMALBE algorithm (Section 3.2), yet to

avoid the explicit orthogonalization of BE . Actually, only the action of (BEB
T
E)

−1 is needed

which is implementable in several efficient ways (Section 7.5.3).

5.1

Equality constraint orhonormalization

Let us consider a bound and equality constrained problem

min
1

2
xTAx− xTb s.t BEx = cE and xI ≥ o. (5.1)

By pre-multiplying both sides of equality constraints with a non-singular matrix T such that

TBE has orthonormal rows, we get a new problem

min
1

2
xTAx− xTb s.t B̃Ex = c̃E and xI ≥ o. (5.2)

where

B̃E = TBE , c̃E = TcE . (5.3)

56 5 Implicit orhonormalization

This orthonormalization is needed to get optimal results for penalty method and the derived

SMALBE algorithm. The reason is that the penalized term resulting from the orthonormal

equality constraints preserves the spectrum of the original Hessian.

We are here interested in large sparse matrices distributed across computational nodes. There

is no implementation of explicit sparse QR factorization fulfilling such requirements available.

Another option is the Classical Gram-Schmidt process (CGS) which is more appropriate for

distributed vectors than the Modified Gram-Schmidt process. Thanks to the iterative refinement,

stability is not an issue. However, the CGS is suitable up to about a thousand of vectors because

of the combination of its algorithmic complexity (number of the processed vectors is an arithmetic

series) and communication demands (at least one scalar product for each processed vector).

Efficient Cholesky factorization implementations for distributed memory are available in

several libraries (Section 6.5). Cholesky factorization can be used in this way

BEB
T
E

Cholesky
= LLT , (5.4)

T = L−1. (5.5)

However, the actions of the sole L−1 and L−T are not available in most cases. Fortunately, their

need can be circumvented as described below.

5.2

Equality constraint homogenization

We shall adapt the QP transform described in Section 2.3.3. Let x̃ satisfy

B̃E x̃ = c̃E . (5.6)

It is natural to use the least-square solution

x̃ = B̃R
E c̃E , (5.7)

which is thanks to orthonormality

x̃ = B̃T
E c̃E . (5.8)

The solution of (5.2) can then be sought in the form

x = x̂+ x̃. (5.9)

Since
1

2
xTAx− xTb =

1

2
x̂TAx̂− x̂T (b−Ax̃) +

1

2
x̃TAx̃− x̃Tb,

and the last two terms are constant with respect to x̂, the problem (5.2) is equivalent to

min
1

2
x̂TAx̂− x̂Td s.t B̃Ex̂ = o and x̂I ≥ ℓ, (5.10)

5.3 Preconditioning by the orthogonal projector 57

where d = b−Ax̃ and ℓ = −x̃I . Let us return to the old notation, x := x̂,

min
1

2
xTAx− xTd s.t B̃Ex = o and xI ≥ ℓ. (5.11)

Notice that using (5.3) and (5.5), we can rewrite (5.8) as

x̃ = B̃T
E c̃E = BT

ET
TTcE = BT

EL
−TL−1cE = BT

E(LL
T)−1cE .

Additionally, exploiting (5.4) we get

x̃ = BT
E(BEB

T
E)

−1cE = BR
EcE , (5.12)

i.e. (5.8) can be rewritten using only the original dual constraint matrix BE with no explicit

standalone T.

5.3

Preconditioning by the orthogonal projector

Proceeding with the QP transform of Section 2.3.5, the problem (5.11) can be reformulated as

min
1

2
xTPAPx− xTPd s.t B̃Ex = o and xI ≥ ℓ, (5.13)

where

P = B̃T
E(B̃EB̃

T
E)

−1B̃E = B̃T
EB̃E = BR

EBE ,

using the very same trick as in the previous section. Again, no explicit T is introduced.

5.4

SMALBE-M algorithm modification

The original SMALBE-M algorithm for bound and equality constrained QP has been presented

as Algorithm 1 in Section 3.2. The augmented Lagrangian and its gradient for the problem

(5.13) read

L(x,λE , ρ) =
1

2
xT (PAP + ρB̃T

EB̃E)x− (Pd)Tx+ xT B̃T
EλE , (5.14)

g(x,λE , ρ) = (PAP + ρB̃T
EB̃E)x−Pd+ B̃T

EλE , (5.15)

and the projected gradient gP is obtained by projecting g into the superset of the feasible set

related to the bound constraints. Standalone λk
E appears in Algorithm 1 only in its own update

(line 3). In other places it appears only as a part of L and g defined in (5.14) and (5.15),

58 5 Implicit orhonormalization

respectively, where it is pre-multiplied by B̃T
E . We can alter the line 3 of Algorithm 1 in order

to directly update B̃T
EλE and no longer explicitly evaluate λk

E,

(B̃T
EλE)

k+1 := (B̃T
EλE)

k + ρB̃T
EB̃Ex

k. (5.16)

Finally, the action of B̃E appears in the stopping criterion in the equality constraint violation

norm ||B̃Ex
k|| which can be evaluated as

||B̃Ex
k|| =

√
(xk, B̃T

EB̃Exk). (5.17)

But again B̃T
EB̃E = BR

EBE with no explicitly appearing T.

Notice that after these modifications SMALBE-M contains only actions of B̃T
EB̃E but no

actions of B̃E and T alone.

59

Part II

Implementation

61

CHAPTER VI

Open source software for numerical

modelling

Open source libraries promote advances in computational science by allowing users to use them

for their own science and make derived works. For supercomputing, it is important that the

number of processors used for computations is not limited by the number of the owned licenses.

All the open source libraries mentioned in this chapter are related by focus to our own PERMON

software. Some of them even already belong to its dependencies, some can be potentially used

to extend its capabilities, some are just based on similar ideas. Several closed source software

products are also mentioned here as they are strongly relevant for this thesis’ topics.

6.1

Meshing

This subsection lists some freely available tools for automatic mesh generation. A more complete

list of them can be found e.g. in [42].

6.1.1 Netgen

Netgen [48] is a well-known automatic 3D tetrahedral mesh generator. It comes as a C++

program library as well as stand-alone program with its own graphical user interface. It accepts

input from constructive solid geometry (CSG) or boundary representation (BRep) from STL

file format. The connection to a geometry kernel allows the handling of IGES and STEP files.

Netgen contains modules for mesh optimization and hierarchical mesh refinement. There is a

62 6 Open source software

general purpose FEM library on top of Netgen called NGSolve [49]. Netgen is open source

based on the LGPL license.

6.1.2 TetGen

TetGen [72] is a program and C++ program library to generate tetrahedral meshes of any 3D

polyhedral domains. TetGen generates exact constrained Delaunay tetrahedralizations, bound-

ary conforming Delaunay meshes, and Voronoi partitions. TetGen provides various features to

generate good quality and adaptive tetrahedral meshes suitable for numerical methods, such

as FEM or finite volume methods. They include mesh quality and size control; adaptive mesh

refinement (AMR); mesh coarsening; surface mesh refinement; facet self-intersection detection

and others. TetGen is distributed under the terms of the GNU Affero General Public License

(AGPLv3).

6.1.3 Triangle

Triangle [78] generates exact Delaunay triangulations, constrained Delaunay triangulations, con-

forming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The

latter can be generated with no small or large angles, and are thus suitable for finite element

analysis. The product is no longer maintained. Available under a custom open source license.

6.1.4 ViennaMesh

ViennaMesh [81] provides a unified C++, template-based interface for various mesh related

tools. These tools cover mesh generation, adaptation, and classification of multi-segmented

meshes and geometries for unstructured two- and three-dimensional meshes. The goal is to pro-

vide applications with an additional back-end layer for mesh generation, allowing to seamlessly

exchange mesh tools, for example, mesh generation kernels. Currently the following external

mesh generation kernels are available: Triangle, Tetgen, and Netgen – all described above. Sev-

eral tools are available to further improve the quality of the generated meshes. Most notable is

a hull adaptation module which significantly improves the quality of a hull mesh and therefore

improves the quality of the subsequent volume meshing step too. ViennaMesh is available under

the LGPL.

There is a related product, ViennaGrid [80] for handling of structured and unstructured

meshes in arbitrary spatial dimensions using different coordinate systems. It employs a highly

configurable internal representation of meshes, while providing a uniform interface for the storage

and access of data on mesh elements as well as STL-compatible iteration over such elements.

ViennaGrid is available under the permissive MIT/X11 license.

6.2 Partitioning 63

6.1.5 Pamgen

Pamgen [30, 76] is a different type of product – it is focused on producing, in parallel, during

simulation code execution, multi-billion element hexahedral or quadrilateral meshes of simple

topologies. The Pamgen library provides functions to mimic the process of reading mesh data

from a processor specific mesh file through a file access API. During a parallel simulation, each

processor provides Pamgen with a terse specification of the desired finite element mesh, the total

number of processors, and the index of the local processor. At that time, the Pamgen library

calculates the mesh for the local processor and its relation to mesh on adjacent processors. The

processor may then call functions that return descriptions of its local the finite element mesh

and the relationship of that mesh to the mesh on adjacent processors. Pamgen is licensed LGPL.

6.2

Partitioning

6.2.1 METIS

METIS [43] is a set of serial programs for partitioning graphs, partitioning finite element meshes,

and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS

are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partition-

ing schemes developed in Karypis lab. METIS provides fast sparse matrix orderings which

reduce the computational and storage requirements up to an order of magnitude and are suit-

able for parallel direct factorization. From version 5.0, Metis provides support for enforcing

finite element mesh partitions to be contiguous. METIS is licensed under the Apache License,

Version 2.0.

6.2.2 ParMETIS

ParMETIS [54] is an MPI-based parallel library that implements a variety of algorithms for

partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse

matrices. ParMETIS extends the functionality provided by METIS and includes routines that

are especially suited for parallel adaptive mesh refinement (AMR) computations and large scale

numerical simulations. The algorithms implemented in ParMETIS are based on the parallel

multilevel k-way graph-partitioning, adaptive repartitioning, and parallel multi-constrained par-

titioning schemes developed in Karypis lab. ParMETIS is distributed under the custom license1,

allowing free use for educational and research purposes, other uses require prior approval.

1
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download

64 6 Open source software

6.2.3 SCOTCH

The purpose of SCOTCH [64] is to apply graph theory with a divide and conquer approach

to scientific computing problems such as graph and mesh partitioning, static mapping, and

sparse matrix orderings. Its capabilities can be used through a set of stand-alone programs as

well as through the libSCOTCH library, which offers both C and Fortran interfaces. SCOTCH

provides algorithms to partition graph structures, as well as mesh structures defined as node-

element bipartite graphs and which can also represent hypergraphs. Its running time is linear

in the number of edges of the source graph, and logarithmic in the number of vertices of the

target graph for mapping computations. It provides many tools to build, check, and display

graphs, meshes and matrix patterns. It is written in C and uses the POSIX interface, which

makes it highly portable. PT-SCOTCH uses the MPI interface, and optionally the POSIX

threads. SCOTCH is developed by the Laboratoire Bordelais de Recherche en Informatique

(LaBRI) within the ScAlApplix project of INRIA Bordeaux - Sud-Ouest. It is distributed as

free software, under the terms of the CeCILL-C license2.

6.3

FEM libraries

This section presents an alphabetically sorted selection of open source libraries implementing

discretization of PDEs using FEM. It is perhaps impossible to provide here a fully exhaustive

list but we have done our best to point out products that are in our humble opinion well-known,

widely used, maintained, and support high-performance computing (HPC). A more complete

list of FEM software can be found e.g. in [83].

6.3.1 deal.II

deal.II [73] is a C++ program library aimed to enable rapid development of modern adaptive

FEM codes. It provides tools for adaptive meshes, grid handling and refinement, handling of

degrees of freedom, input of meshes and output of results in graphics formats, etc. Support

for dimension independent programming is included by means of integer template parameters,

i.e. without penalties on run-time and memory consumption [4]. A complete stand-alone linear

algebra library and interfaces to Trilinos and PETSc are offered. deal.II supports both threading

(using TBB) and message passing parallelization models. A limitation for industrial use lies in

the fact that triangles and tetrahedra elements are not directly supported by design. deal.II is

licensed LGPL v2.1.

2
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html

6.3 FEM libraries 65

6.3.2 DUNE

DUNE (the Distributed and Unified Numerics Environment) [18] is a modular toolbox for solving

partial differential equations (PDEs) with grid-based methods. It supports the easy implemen-

tation of discretization methods like FEM, Finite Volumes (FV), and also Finite Differences

(FD). The underlying idea of DUNE is to create slim interfaces allowing an efficient use of

legacy and/or new libraries. C++ template design enables very different implementations of

the same concept (i.e. grids, solvers, and so on) using a common interface at a very low over-

head. DUNE contains its own parallel linear algebra module called ISTL (the Iterative Solver

Template Library). DUNE is licensed under the GPL v2 with a ”runtime exception”.

6.3.3 Elmer

Elmer [60, 61] is an open source multiphysical simulation software mainly developed by CSC

– IT Center for Science (CSC), Finland. Elmer development was started 1995 in collaboration

with Finnish Universities, research institutes and industry. After its open source publication

in 2005, the use and development of Elmer has become international. Elmer includes physical

models of fluid dynamics, structural mechanics, electromagnetics, heat transfer and acoustics,

for example. Unlike other tools in this section, Elmer is a self-contained SW package which can

be directly used by the user without coding. Released under GPL v2.

6.3.4 Feel++

Feel++ [22] is a relatively new C++ library for arbitrary order continuous or discontinuous

Galerkin methods (such as FEM, hp-FEM, spectral element method and reduced basis method)

in 1D, 2D and 3D. It is aimed to be a small and manageable library which shall nevertheless

encompass a wide range of numerical methods and techniques. It offers a language for varia-

tional formulations embedded into C++ for maximal mathematical expressivity. It depends on

PETSc for linear and non-linear solvers, and optionally interfaces SLEPc for sparse standard

and generalized eigenvalue solvers. It supports Gmsh (mesh generation and post-processing)

and Paraview (post-processing). Feel++ code license is LGPL v3.

6.3.5 FEniCS

The FEniCS Project [74] is a collection of interoperable software components for efficient au-

tomated solution of PDEs. FEniCS also provides tools for exploring and development of new

methods. It has an extensive list of features including automated solution of variational prob-

lems, automated error control and adaptivity, a comprehensive library of FEs, and many more.

PDEs can be specified in near-mathematical notation (as FE variational problems) and solved

automatically thanks to the DOLFIN C++/Python library. The DOLFIN component provides

a problem solving environment for models based on PDEs and implements core parts of the

66 6 Open source software

functionality of FEniCS, including data structures and algorithms for computational meshes

and finite element assembly. FEniCS provides unified access through a common wrapper layer

to a range of linear algebra backends – PETSc, Trilinos/Epetra, uBLAS and MTL4. The back-

end may be easily switched, parallel computing is supported through the PETSc and Epetra

backends. All FEniCS core components are licensed under the LGPL v3.

6.3.6 FreeFem++

FreeFem++ [23, 28] is a software to solve numerically PDEs in 2D and 3D with FEM. It is written

in C++. It has its own user language to set and control the problem. The FreeFem++ language

allows a quick specification of linear PDEs with the variational formulation of a linear steady

state problem. Scripts can be written to solve nonlinear, time-depend or coupled problems.

One can solve problems with moving domain or eigenvalue problems, do mesh automatic mesh

generation and adaption, compute error indicators, etc. Integrated graphical environment called

FreeFem++-cs is offered. FreeFem++ is distributed under the LGPL v2.1.

6.3.7 Hermes

Hermes [31] is a C++ library for rapid development of adaptive hp-FEM and hp-DG solvers,

with emphasis on nonlinear, time-dependent, multi-physics problems. Novel hp-adaptivity al-

gorithms help solve a large variety of problems ranging from ODE and stationary linear PDE

to complex time-dependent nonlinear multiphysics PDE systems. PETSc, Trilinos, PARALU-

TION, SuperLU, MUMPS and UMFPACK can be used as matrix solvers. A standard way to

use Hermes is to write short C++ user programs, but for those who prefer a graphical interface,

there is a graphical engineering tool based on Hermes called Agros2D [1]. Hermes is licensed

LGPL v3.

6.3.8 libMesh

The libMesh [37, 38] library provides a framework for the numerical simulation of PDEs using

arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the

library is to provide support for adaptive mesh refinement (AMR) computations in parallel

while allowing a research scientist to focus on the physics they are modelling. libMesh currently

supports 1D, 2D, and 3D steady and transient simulations on a variety of popular geometric

and finite element types. The library makes use of high-quality, existing software whenever

possible. PETSc or Trilinos are used for the solution of linear systems on both serial and

parallel platforms, and LASPack is included with the library to provide linear solver support on

serial machines. An optional interface to SLEPc is also provided for solving both standard and

generalized eigenvalue problems. libMesh is licensed under the LGPL v3.

6.4 Toolkits for numerical computations 67

6.3.9 MOOSE

The Multiphysics Object-Oriented Simulation Environment (MOOSE) [44] is a FE multiphysics

framework primarily developed by Idaho National Laboratory. It provides a high-level inter-

face to PETSc and libMesh. MOOSE presents a straightforward API that aligns well with

the real-world problems. Features include fully-coupled, fully-implicit multiphysics solver; di-

mension independent physics; modular development; built-in mesh adaptivity; Continuous and

Discontinuous Galerkin (DG); intuitive parallel multiscale solves; dimension agnostic, parallel

geometric search (for contact related applications); flexible, pluggable graphical user interface;

physics modules providing general capability for solid mechanics, phase field modelling, Navier-

Stokes, heat conduction and more. The 2014 R&D 100 Award Winner in Software category.

Everything in MOOSE is licensed under the LGPL.

6.3.10 OOFEM

OOFEM [50] is a free FE code with object oriented architecture for solving mechanical, trans-

port and fluid mechanics problems that operates on various platforms. The aim of this project is

to develop efficient and robust tool for FEM computations as well as to provide modular and ex-

tensible environment for future development. The fundamental part is a modular and extensible

FEM kernel (OOFEMlib). Its features include full extensibility; full restart support; staggered

analysis; parallel processing (based on domain decomposition, message passing paradigms, and

dynamic load balancing engine); adaptive analysis; eXtented Finite Element Method (XFEM);

Iso-Geometric Analysis (IGA). OOFEM possesses interfaces to sparse linear and eigenvalue

solver libraries (PETSc, SLEPc, IML, and SPOOLES). OOFEM is released under LGPL v2.1.

6.4

Toolkits for numerical computations

This section discusses well-known general toolkits for fundamental numerical computations

which provide linear algebra, linear system solvers, preconditioners and so on. They provide

infrastructure for PDE solution on all major hardware platforms and operating systems of per-

sonal computers as well as supercomputers.

6.4.1 PETSc

PETSc (Portable, Extensible Toolkit for Scientific Computation) [2, 3, 67] PETSc is a suite of

data structures and routines for the scalable parallel solution of scientific applications modelled

by PDEs. It supports MPI, shared memory, and GPUs through CUDA or OpenCL, as well as

hybrid MPI-shared memory or MPI-GPU parallelism. It provides parallel matrix data structures

and algorithms, preconditioners, linear and nonlinear system solvers, time integration, data

68 6 Open source software

structures and operations for unstructured and structured meshes, debugging and profiling tools,

and others.

PETSc provides many of the mechanisms needed within parallel application codes, such as

parallel matrix and vector assembly routines. The library is organized hierarchically, enabling

users to employ the level of abstraction that is most appropriate for a particular problem. By

using techniques of object-oriented programming, PETSc provides enormous flexibility for users.

PETSc also provides extensive set of interfaces to many external libraries (sparse and dense

linear system solvers, preconditioners, input/output, partitioning, and others). This is a popular

feature as it greatly reduces effort needed for integration of all those libraries into the user’s code.

PETSc is written in ANSI C, callable also from C++, FORTRAN, Python, Java and MATLAB.

Is is distributed under a permissive open source license (2-clause BSD).

There are two important libraries extending PETSc that use the same “look & feel”: SLEPc

(Scalable Library for Eigenvalue Problem Computations) [32, 66] for eigenvalue problem solution

(licensed LGPL v3), and TAO (Toolkit for Advance Optimization) for nonlinear optimization

(Section 6.6.1). TAO became a part of PETSc since its version 3.5.

6.4.2 Trilinos

The Trilinos Project [75] is an effort to develop algorithms and enabling technologies using

modern object-oriented software design for the solution of large-scale, complex multi-physics en-

gineering and scientific problems, while still leveraging the value of established libraries such as

PETSc, METIS, SuperLU, Aztec, the BLAS and LAPACK. It consists of relatively autonomous,

loosely coupled packages with common web page, build system, and basic infrastructure. Par-

ticularly, its Epetra package provides the parallel sparse linear algebra foundation layer. Its

more modern, template-based successor is the Tpetra package. Trilinos emphasizes abstract

interfaces for maximum flexibility of component interchanging, and provides a full-featured set

of concrete classes that implement all abstract interfaces. The code is written mainly in C++

with FORTRAN and Python bindings. Most Trilinos source code, including the code developed

at Sandia National Laboratories, is licensed either LGPL or BSD.

6.4.3 PARALUTION

PARALUTION [52] is a library that enables performing various sparse iterative solvers and pre-

conditioners on multi/many-core CPU, GPU, and Intel Xeon Phi/MIC devices. Based on C++,

it provides a generic and flexible design that allows seamless integration with other scientific

software packages. PARALUTION contains Krylov subspace solvers, Multigrid, Deflated PCG,

Fixed-point iteration schemes, Mixed-precision schemes and fine-grained parallel preconditioners

based on splitting, ILU factorization with levels, multi-elimination ILU factorization, additive

Schwarz and approximate inverse. The library also provides iterative eigenvalue solvers. The

PARALUTION library is released under the dual license model – GPL v3 and commercial.

6.5 Parallel sparse direct linear solvers 69

6.4.4 ViennaCL

The Vienna Computing Library (ViennaCL) [79] is a scientific computing library written in

C++ and provides CUDA, OpenCL and OpenMP computing backends. It enables simple,

high-level access to the vast computing resources available on parallel architectures such as

GPUs and is primarily focused on common linear algebra operations (BLAS levels 1, 2 and

3) and the solution of large systems of equations by means of iterative methods with optional

preconditioners. ViennaCL wrappers are available in PETSc. ViennaCL is distributed under

the MIT/X11 open source license.

6.5

Parallel sparse direct linear solvers

6.5.1 MUMPS

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [46] is a package for solving

systems of linear equations with square sparse matrix that can be either unsymmetric, symmetric

positive definite, or general symmetric. MUMPS employs a multifrontal method for LU and

LDLT factorization [40]. MUMPS exploits both parallelism arising from sparsity in the system

matrix and from dense factorizations kernels. The main features of the MUMPS package include

the solution of the transposed system, input of the matrix in assembled format (distributed or

centralized) or elemental format, error analysis, iterative refinement, scaling of the original

matrix, out-of-core capability, parallel analysis, detection of null pivots, basic estimate of rank

deficiency and null space basis for symmetric matrices, and computation of a Schur complement

matrix. MUMPS offers several built-in ordering algorithms and a tight interface to some external

ordering packages. MUMPS is available in various arithmetics (real or complex, single or double

precision). The software is mainly written in Fortran 90 although a C interface is available. It

uses pure MPI parallelization and relies on ScaLAPACK for auxiliary parallel dense solves. It

is released under the CeCILL-C license3.

6.5.2 SuperLU

SuperLU [71] is a general purpose library for the direct solution of large, sparse, nonsymmetric

systems of linear equations on high-end computers, based on the supernodal LU factorization

method. The library is written in C and is callable from either C or Fortran. The library routines

perform an LU factorization with numerical pivoting and triangular system solves (forward and

backward substitution). Routines are provided to perform iterative-refinement, equilibrate the

system, estimate the condition number, calculate the relative backward error, and estimate error

3
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html

70 6 Open source software

bounds for the refined solutions. The factorization algorithm uses a graph reduction technique

to reduce graph traversal time in the symbolic analysis, and data movement between levels of

the memory hierarchy is reduced through loop ordering and the use of dense matrix opera-

tions in the numerical kernel. For the distributed memory implementation, a two-dimensional

block cyclic matrix distribution is used to enhance scalability. SuperLU contains a collection

of three related subroutine libraries: sequential SuperLU for uniprocessors, the multithreaded

version (SuperLU MT) for medium-size SMPs, and the MPI version (SuperLU DIST) for large

distributed memory machines. It is released under a custom open-source license4.

6.5.3 PARDISO

PARDISO [53] is according to its authors “a thread-safe, high-performance, robust, memory

efficient and easy to use software for solving large sparse symmetric and unsymmetric linear

systems of equations on shared-memory and distributed-memory multiprocessors.” It supports

unsymmetric, structurally symmetric or symmetric, real or complex, positive definite or indefi-

nite, hermitian matrices. It supports both shared and distributed memory models. PARDISO is

mature, efficient and feature-rich product but it is the only library from all mentioned here that

has a closed-source license. However, an older version of PARDISO from 2006 is distributed as

a part of Intel MKL. This one is interfaced by PETSc (Section 6.4.1).

6.5.4 Other sparse direct solvers

Another interesting sparse direct solver is PasTiX[55], usable in a hybrid MPI/multi-threaded

manner which is still quite a rare feature. SuiteSparse [70] features several well-known sparse di-

rect solvers, for instance KLU, UMFPACK or CHOLMOD. They do not support the distributed

memory model. However, the latter one supports GPU acceleration.

6.6

QP solvers

6.6.1 TAO

The Toolkit for Advanced Optimization (TAO) [47] focuses on the development of algorithms

and software for the solution of large-scale optimization problems on high-performance archi-

tectures. Areas of interest include unconstrained and box-constrained optimization, nonlinear

least squares problems, optimization problems with partial differential equation constraints, and

variational inequalities and complementarity constraints. TAO has become a part of PETSc

(Section 6.4.1) since its version 3.5. As such, it has the same licence, i.e. 2-clause BSD.

4
http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/License.txt

6.6 QP solvers 71

6.6.2 OOQP – object-oriented software for quadratic programming

OOQP [51] is an object-oriented C++ package, based on a primal-dual interior-point method,

for solving convex QPs. It contains code that can be used “out of the box” to solve a variety

of structured QPs, including general sparse QPs, QPs arising from support vector machines,

Huber regression problems, and QPs with bound constraints. OOQP itself is not parallelized,

it can however wrap a parallel linear algebra library such as PETSc (Section 6.4.1). The source

code seems to be abandoned, the latest commit to the source repository was on November 1,

2014. It is licensed under a custom open source license5.

6.6.3 QuadProg++

QuadProg++ [59] is a sequential C++ library for strictly convex QP which implements the

Goldfarb-Idnani active-set dual method. It is licensed under LGPL. The code is no longer

maintained, the last update was on January 8, 2013.

6.6.4 CGAL

CGAL (The Computational Geometry Algorithms Library) [6] is an open source software project

that provides easy access to efficient and reliable geometric algorithms in the form of a C++

library. This library offers data structures and algorithms like triangulations, Voronoi diagrams,

Boolean operations on polygons and polyhedra, point set processing, arrangements of curves,

surface and volume mesh generation, geometry processing, alpha shapes, convex hull algorithms,

shape analysis, AABB and KD trees and others. Its package Linear and Quadratic Programming

Solver contains algorithms for linear programming and QP. The algorithms are exact, i.e. the

solution is computed in terms of multiprecision rational numbers. The resulting solution is

certified: along with the claims that the problem under consideration has an optimal solution,

is infeasible, or is unbounded, the algorithms also deliver proofs for these facts. These proofs

can easily (and independently from the algorithms) be checked for correctness. The solution

algorithms are based on a generalization of the simplex method to quadratic objective functions.

CGAL is distributed under a dual license scheme: GPL/LGPL and commercial.

6.6.5 Elemental

Elemental [19] is a library for distributed-memory direct linear algebra and optimization, with

the term direct being the best single descriptor for the class of algorithms containing dense

linear algebra, sparse-direct linear algebra, and Interior Point Methods for convex optimization.

Elemental currently supports C++11, C, and Python interfaces. There is also a separately

maintained R interface called R-Elemental [62], and a Julia interface is under development.

5
http://pages.cs.wisc.edu/˜swright/ooqp/COPYRIGHT.html

72 6 Open source software

Interfaces to other languages, such as Fortran 90, can be built on top of the C interface. El-

emental currently supports distributed dense and sparse Linear, Quadratic, and Second-Order

Cone Programs via Mehrotra Predictor-Corrector primal-dual Interior Point Methods. All files

distributed with Elemental, with the exception of Elementals custom ParMETIS extensions

(which can easily be disabled), are distributed under the terms of the New BSD (BSD 3-clause)

license.

6.6.6 qpOASES

qpOASES [58] is an open-source C++ implementation of the recently proposed OASES (Online

Active SEt Strategy), which was inspired by important observations from the field of paramet-

ric quadratic programming (QP). It has several theoretical features that make it particularly

suited for model predictive control (MPC) applications. Further numerical modifications have

made qpOASES a reliable QP solver, even when tackling semi-definite, ill-posed or degenerated

QP problems. Moreover, several interfaces to third-party software like MATLAB or Simulink

are provided that make qpOASES easy-to-use even for users without knowledge of C/C++.

qpOASES can solve any QP and also does a good job in detecting infeasible or unbounded QP

problem formulations. Current development is mainly supported by researchers at the Inter-

disciplinary Center for Scientific Computing at Heidelberg University and at ABB Corporate

Research. qpOASES is distributed under the LGPL, version 2.1.

6.6.7 CVXOPT – Python Software for Convex Optimization

CVXOPT [7] is a free software package for convex optimization based on the Python program-

ming language. It can be used with the interactive Python interpreter, on the command line by

executing Python scripts, or integrated in other software via Python extension modules. Its main

purpose is to make the development of software for convex optimization applications straight-

forward by building on Pythons extensive standard library and on the strengths of Python as a

high-level programming language. CVXOPT is itself sequential but may be used with threaded

BLAS. CVXOPT is released under the GPL v3.

6.6.8 HQP – Huge Quadratic Programming

HQP [33] is a sequential solver for nonlinearly constrained large-scale optimization. It is in-

tended for problems with sufficient regular sparsity structure. Such optimization problems arise

e.g. from the numerical treatment of optimal control problems. External interfaces allow the

formulation of optimization problems based on widely used model formats. HQP consists of two

main parts: the actual HQP optimizer and the front-end Omuses. Both parts are designed as

framework in the programming language C++. The actual HQP optimizer treats nonlinearly

constrained problems with a sequential quadratic programming (SQP) algorithm. An interior-

point method is applied to the solution of convex quadratic subproblems. The implementation

6.6 QP solvers 73

is based on sparse matrix codes of the Meschach library for matrix computations in C. The ma-

trix library was extended with additional routines for the analysis and direct solution of sparse

equation systems. HQP is available under the GPL/LGPL.

6.6.9 GALAHAD

GALAHAD [25] is a thread-safe library of Fortran 2003 packages for solving nonlinear opti-

mization problems. At present, the areas covered by the library are unconstrained and bound-

constrained optimization, quadratic programming, nonlinear programming, systems of nonlinear

equations and inequalities, and nonlinear least squares problems. It provides MATLAB support

and generic interfaces for external sparse direct solvers, including those that work in parallel or

out-of-core. It uses a proprietary dual academic/commercial license6.

6.6.10 PENOPT

PENOPT [56] is a set of sequential computer programs for mathematical optimization and re-

lated specialized optimization programs. Its goal is to develop a unified approach to problems of

nonlinear programming (NLP) and (linear and nonlinear) semidefinite programming (SDP). The

solvers are based on a generalized Augmented Lagrangian method combined with the Trust Re-

gion algorithm. PENOPT flagship PENNON solves optimization problems with general smooth

objective function and combination of standard nonlinear constraints with linear and bilinear

matrix inequality constraints. PENLAB is a MATLAB-based code which is able to solve almost

all types of problems that PENNON can. It was developed in cooperation with NAG Ltd. Other

packages of PENOPT include PENSDP (a solver for linear semidefinite programming problems),

PENBMI (solver for optimization and feasibility problems with quadratic objective function and

linear and bilinear matrix inequalities) and PENFMO (code for Free Material Optimization).

PENLAB is available under an open-source license (GPL v3.0). All other PENOPT solvers use

a proprietary license.

6.6.11 Gurobi

The Gurobi Optimizer [27] is a state-of-the-art solver for mathematical programming. The

solvers in the Gurobi Optimizer were designed from the ground up to exploit modern archi-

tectures and multi-core processors, using the most advanced implementations of the latest

algorithms. It includes the following solvers: linear programming solver, mixed-integer lin-

ear programming solver, mixed-integer quadratic programming solver, quadratic programming

solver, quadratically constrained programming solver, mixed-integer quadratically constrained

programming solver. Gurobi is commercial software but free of charge for academic users.

6
http://www.galahad.rl.ac.uk/cou.html

74 6 Open source software

6.6.12 MOSEK

MOSEK [45] is a tool for solving mathematical optimization problems such as linear programs,

quadratic programs, conic problems, mixed integer problems. Due to its powerful state-of-the-

art interior-point optimizer for linear, quadratic and conic problems, MOSEK is widely employed

in the financial, energy and forestry industry. It includes interfaces to languages such as C, Java,

.NET and Python. MOSEK is commercial software but free of charge for academic users.

75

CHAPTER VII

PERMON toolbox

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) is a newly emerg-

ing collection of software libraries, uniquely combining QP algorithms and DDMs. It is built on

top of the well-known PETSc framework for numerical computations (mainly its linear algebra

part) and adds new specific functionality – QP algorithms, DDMs of the FETI type, and some

application-specific algorithms (for e.g. contact mechanics, elasto-plasticity). Among the main

applications are contact problems of mechanics.

The central part of PERMON is its Solver Core consisting of PermonFLLOP and PermonQP

modules. Moreover, PERMON includes application-specific solver modules (PermonPlasticity,

PermonMultiBody), discretization tools (PermonCube, PermonMembrane and interfaces with

external discretization software), and support tools.

The PermonFLLOP package is focused on non-overlapping DDM of the FETI type, allowing

efficient and robust utilization of contemporary parallel computers for problems with billions

of unknowns. Any FEM software can be used to generate mesh and assemble the stiffness

matrices and load vectors per each subdomain independently. Additionally, a mapping from the

local to the global numbering of degrees of freedom is needed, and non-penetration and friction

information in case of contact problems. All these data are passed to PermonFLLOP, which

prepares auxiliary data needed in the DDM.

PermonQP, a general purpose QP solver, is then called in the backend to solve the resulting

equality constrained problem with additional inequality constraints in case of contact prob-

lems. PermonQP can be used also standalone for applications where QP arise like least-squares

regression, data fitting, data mining, support vector machines, control systems, and others.

This chapter follows the process of solving contact problems with PERMON (Figure 7.1).

The mesh is “teared” into subdomains and each of them is discretized separately with FEM. This

76 7 PERMON toolbox

decomposition and discretization is implemented by the PermonMembrane and PermonCube

(Section 7.1) packages, respectively. They are actually “placeholders” of a full-featured FEM

library, allowing easy benchmarking of Solver Core. Section 7.2 introduces this Solver Core. The

subdomain problems are “interconnected” by means of FETI using PermonFLLOP (Section 7.3).

Finally, the resulting QP problem is solved by the PermonQP module (Section 7.4), which

contains implementations of specific algorithms for inequality constrained problems, particularly

the MPRGP algorithm (Section 3.1). Additionally, Section 7.5 deals with using direct solvers

for the local and coarse problems of FETI in PERMON Solver Core.

PermonCube PermonFLLOP

QPTPrepareTFETI

FETIAssembler

MatBlockDiag

PermonQP

QP

QPS

 QPSSMALXE

 QPSKSP

QPT

 QPTDualize

 QPTEnforceEqByProjector

 QPTEnforceEqByPenalty

 QPTOrthonormalizeEq

 QPTHomogenizeEq

QPC

 QPCBound

 QPCBox

 QPCQuadratic

 QPCConical

 QPCComposite

PermonIneq

QPSMPRGP

QPSMPGPBB

QPSAPGD

QPSSPGQP

QPSPBBF

QPSTAO

PermonMembrane

Figure 7.1: Process of solving contact problems with PERMON.

Papers making use of numerical experiments with PERMON include [85–94] and [97–101,

103, 104, 106, 107].

7.1

PermonCube and PermonMembrane

For rapid development and testing of our solvers, PermonMembrane and PermonCube packages

[92, 93, 105] were developed. They implement the first and second part of the non-overlapping

DDM (Section 4.1) in a massively parallel way for simple benchmarks generated in runtime.

PermonCube is similar by focus to the software package Pamgen [30, 76]. Although it provides

so far only a cubical mesh, the FEM part of the code does not rely on this specific type of

mesh, and works with that as if it were an unstructured mesh, simulating decomposed FEM

processing of real world problems. PermonMembrane generates several different simple bench-

marks of an elastic membrane or two membranes in mutual interaction, with or without domain

decomposition.

7.2 PERMON Solver Core 77

The parallel mesh generation is controlled by two groups of parameters. In PermonCube,

the number of subdomains is managed by parameters X, Y , Z, and similarly the number of

elements per subdomain is given by x, y, z (both considered in the respective axis directions).

In PermonMembrane, the situation is similar, only parameters Z and z are missing. The de-

composition parameter H and the discretization parameter h is given as H = L
X and h = H

x ,

respectively, where L denotes the size of the whole domain.

PermonCube can be executed from the command line as follows:

./runtestmpi 512 -X 8 -Y 8 -Z 8 -x 16 -y 16 -z 16 -c -@ -qp_E_orth_type gs

where 512 is the total number of MPI processes, -c means a contact problem and -@ is a

separator of PermonCube and PermonFLLOP parameters, e.g. in this case specifying Gram-

Schmidt process for equality constraint matrix orthonormalization.

Essential data, generated by PermonCube, PermonMembrane or any other FEM software,

are the subdomain stiffness matrices Ks and the subdomain RHS vectors f s, s = 1, . . . , NS where

NS denotes the total number of subdomains, NS = XY Z for PermonCube and NS = 2XY for

PermonMembrane. In the DDM context, an additional object, the previously described local-to-

global interface DOF mapping l2g, has to be created. These data are passed to PermonFLLOP,

described in Section 7.3.

7.2

PERMON Solver Core

PERMON Solver Core consists of the PermonQP and PermonFLLOP modules. They depend

on PETSc [2, 3, 67] and use its coding style.

1. PermonQP [96] provides a base for solution of linear systems and quadratic program-

ming (QP) problems. It includes data structures, transforms, algorithms, and supporting

functions for QP.

2. PermonFLLOP [95] (FETI Light Layer on Top of PETSc) is an extension of PermonQP

that adds support for DDM of the FETI type.

The combination of DDM and QP algorithms is what makes PERMON unique. These modules

are currently under preparation for publishing under the FreeBSD open source license. They

will be discussed in the following sections.

7.3

PermonFLLOP

PermonFLLOP (FETI Light Layer on Top of PETSc) [95] is an extension of the PermonQP pack-

age, implementing the algebraic part of DDMs of the FETI type (Chapter 4). PermonFLLOP

78 7 PERMON toolbox

ad started as a standalone package FLLOP implementing the TFETI DDM (Chapter 4) and

had been a predecessor of the whole PERMON suite. Heavy refactoring made more general use

possible. There have been two main directions of generalization:

1. FETI can be applied not only to variational equalities (arising e.g. from FEM applied to

linear elasticity problems) but also to variational inequalities (arising e.g. from contact

problems).

2. The “algebraic” part of the FETI method was generalized to a specific combination of

data structures, QP transforms, direct and iterative solvers. Some of these ingredients

make sense also out of the scope of the FETI method. For instance, dualization can be

useful also for undecomposed problems; on the other hand, decomposed problems can be

solved without dualization. Thus these generic ingredients were moved to the PermonQP

module whereas the ingredients specific for FETI have remained inside PermonFLLOP.

Let us show how PermonFLLOP is implemented from the user’s perspective. First of all,

it takes from the FEM software the subdomain stiffness matrices Ks and the subdomain load

vectors f s as sequential data for each subdomain Ωs, s = 1, . . . , NS . Note that we assume here

each processor core owns only one subdomain, PermonFLLOP has nevertheless an experimental

feature of allowing more than one subdomain per core, i.e. an array of Ks and f s is passed per

subdomain. PermonFLLOP enriches the independent subdomain data with the global context

so that K and f are effectively created from Ks and f s, respectively.

The “gluing” signed Boolean matrix Bg is created based on the local-to-global mapping l2g

as described in [107]. The FEM software can skip the processing of the Dirichlet conditions and

rather hand it over to PermonFLLOP, resulting in greater flexibility. PermonFLLOP allows to

enforce Dirichlet boundary conditions either by the constraint matrix Bd (TFETI approach), or

by a classical technique of embedding them directly into K and f (FETI-1 approach). It is also

possible to mix these two approaches.

Furthermore, PermonFLLOP assembles the nullspace matrix R using one of the following

options. The first option is to use a numerical approach [26], and the second one is to generate

R as rigid body modes from the mesh nodal coordinates [91]. The latter is typical for TFETI

and is considered here.

Currently, PermonFLLOP requires BI and cI from the caller. We strive to overcome this

limitation in the future so that the non-penetration conditions will be specified in a way more

natural for engineers. Listing 7.1 shows how a FEM software (such as PermonCube) typically

calls PermonFLLOP to solve a decomposed contact problem.

Mat Ks,BIs; Vec fs,cI,coords; IS l2g,dbcis; MPI_Comm comm; FLLOP fllop;

/* Generate the data. */

/* Create FLLOP living in communicator comm. */

FllopCreate(comm, &fllop);

7.4 PermonQP 79

/* Set the subdomain stiffness matrix and load vector. */

FllopSetStiffnessMatrix(fllop, Ks);

FllopSetLoadVector(fllop, fs);

/* Set the local-to-global mapping for gluing. */

FllopSetLocalToGlobalMapping(fllop, l2g);

/* Specify the Dirichlet conditions in the local numbering

and tell FLLOP to enforce them by means of the B matrix. */

FllopAddDirichlet(fllop, dbcis, FETI_LOCAL, FETI_DBC_B);

/* Set vertex coordinates for rigid body modes. */

FllopSetCoordinates(fllop, coords);

/* Set the non-penetration inequality constraints. */

FllopSetIneq(fllop, BIs, cI);

FllopSolve(fllop);

Listing 7.1: PermonCube calls PermonFLLOP

In the FllopSolve function, PermonFLLOP passes the global primal data K, f , B and

R to PermonQP (Section 7.4), calls a specific series of QP transforms (Section 4.5) provided

by PermonQP, resulting in the bound and equality constrained QP (4.23), which is then solved

with the QPSSolve function. Listing 7.2 in Section 7.4 presents a sketch of the FllopSolve

function.

Open source DDM codes are relatively rare. Let us mention the Multilevel BDDC solver

library (BDDCML) by J. Š́ıstek et al. [65, 69], PETSc BDDC preconditioner implementation by

S. Zampini [57], and the HPDDM code by P. Jolivet and F. Nataf [34–36] tested with FreeFem++

(FEM software described in Section 6.3.6).

7.4

PermonQP

PermonQP [96] allows solving QPs with an SPS Hessian and any combination of linear equal-

ity and inequality constraints including unconstrained QP. It provides a basic framework for

QP solution (data structures, transformations, and supporting functions), a wrapper of PETSc

KSP linear solvers for unconstrained and equality-constrained QP, a variant of the augmented

Lagrangian method called SMALXE (Section 7.4.5, and several concrete solvers for bound con-

strained minimization (PermonIneq). Its programming interface (API) is designed to be easy-

to-use, but also efficient and HPC-oriented.

PermonQP can wrap TAO solvers (Section 6.6.1) and, the other way around, extend TAO

with possibility to solve problems with linear equality and/or inequality constraints. The inter-

face is currently under development.

80 7 PERMON toolbox

7.4.1 QP transforms

PermonQP separates QP problems, transforms and solvers. QP transforms are implemented

in PermonQP according to notions and results in Chapter 2. Let us briefly remind that a QP

transform derives from the given original QP a new QP which is simpler or has some better

properties. Performing several QP transforms in a sequence results in a so called QP chain

(Figure 7.2). It is of course required that the solution of each but the last QP can be efficiently

computed from the solution of its corresponding descendant QP.

QP transforms often allow use of efficient solvers that are not compatible with the original

QP. However, they are themselves solver-neutral. This is the reason why we decided to decouple

them by design from solvers which also implies decoupling of QP problems.

Figure 7.2: QP chain.

The solution process in PermonQP is divided into the following sequence of actions:

1. QP problem specification;

2. a chain of QP transforms generating a chain of QP problems where the last one is passed

to the solver;

3. automatic or manual choice of an appropriate QP solver;

4. the QP solver is called to solve the last QP in the chain;

5. a chain of reconstructions in the reverse order of QP transforms to get a solution of the

original QP.

PermonQP implements all the QP transforms presented in Chapter 2. For instance, QPTHomogenizeEq

(Figure 7.3) transforms the original QP with general equality constraints to the new one with ho-

mogeneous equality constraints. Let us label the original and derived QP as QP1 and QP2, respec-

tively. We only remind that this transform finds a particular solution xP satisfying BExP = cE ,

zeroes the equality constraint RHS and modifies all other RHSs.

In PermonQP, each function representing a QP transform creates a new instance QP2 of the

QP class based on the original QP1. The data objects being altered by the given QP transform

are copied from QP1, modified and stored to QP2. Otherwise, QP1 and QP2 only share pointers

7.4 PermonQP 81

to the same data object. Furthermore, links between QP1 and QP2 are created; QP1 obtains a

child link to QP2, QP2 gets a parent link to QP1 By this means, the QP chain is generated as a

doubly linked list (Figure 7.2).

The solution x̄2 is generally not equal to the solution x̄1. The asociated reconstruction

function
(
QP2→QP1

)
must be called to carry out x̄1 =

(
QP2→QP1

)
(x̄2). For the above-mentioned

case, the reconstruction function is
(
QP2→QP1

)
(x) = x+ xP , so it holds that x̄1 = x̄2 + xP . In

PermonQP, the reconstruction function is injected into the child QP by the transform function.

Once the solution of the last QP is computed, the solver triggers a series of the reconstruction

functions in LIFO manner, i.e. the reconstruction function of the last QP is called first.

We also need to store somewhere the auxiliary data created by a transform and needed by

the asociated reconstruction function. In our case, it is the vector xP . For this purpose so called

reconstruction context is used; it is a void pointer, injected to the child QP together with the

reconstruction function. The notions mentioned above are illustrated by Figure 7.3.

so
lv

e
r

parent

child

QPHomogenizeEq

reconstruction function

parent‘s

solution

child‘s

solution

QP0 QP1

Figure 7.3: Example of QP transform and reconstructions of the solution – homogenization of

the equality constraints.

7.4.2 PETSc object design

It has been already mentioned that PERMON is built on top of PETSc. PETSc is designed

using strong data encapsulation. Hence, any collection of data (for instance, a sparse matrix) is

stored in a way that is completely private from the application code. The application code can

manipulate the data only through a well-defined interface, as it does not “know” how the data

are stored internally [68].

82 7 PERMON toolbox

PETSc is designed around several classes (e.g. Vec (vectors), Mat (matrices, both dense

and sparse)), which inherit from the common abstract class PetscObject. These classes are

each implemented using C structs, that contain the data and function pointers for operations

on the data (much like virtual functions in classes in C++). Each class consists of three parts:

1. a (small) common part shared by all PetscObjects.

2. another common part shared by all PETSc implementations of the given class and

3. a private part used by a particular implementation (called type in PETSc).

These parts form a simple 3-level inheritance scheme. For example,

1. all objects (PetscObject) share data fields common to all objects such as the commu-

nicator and name;

2. additionally, all matrix (Mat) types share a function table of operations that may be

performed on the matrix and some additional data fields such as the matrix size;

3. additionally, a particular matrix implementation (say compressed sparse row) has its own

data fields for storing the actual matrix values and sparsity pattern [68].

7.4.3 PermonQP API

A class used to specify a QP problem is called simply QP. It is a data structure containing at least

the Hessian matrix A, RHS b and the solution vector x. In PermonQP, these objects are called

Operator, Rhs, SolutionVector, respectively. To insert them into the QP structure,

setters named QPSet<ObjectName> are called by the user code (e.g. QPSetOperator).

Additionally, any combination of these constraints can be specified:

1. equality constraints (Eq),

2. inequality constraints (Ineq),

3. box constraints (Box).

Objects that are not specified (i.e. set to NULL) are handled as zero or empty objects with an

exception of box constraints, for which NULL means an inactive constraint with all values equal

to −∞ or ∞ for lower bound or upper bound constraints, respectively. PermonQP allows setting

multiple linear equality constraints with QPAddEq and uses internally the MATNEST composite

matrix type from PETSc to handle them.

A QP object may point to its parent and child, forming a doubly linked list – the QP chain.

Every QP transforms is implemented as a function which takes a QP as a first argument. It

traverses through the QP chain, following the child pointers and finds the last QP in the chain.

It then creates a new derived QP, setting its parent link to point to the last QP and a pointer

to the appropriate reconstruction function, corresponding to the particular QP transform. The

child link of the last QP is set to point to the new QP and this new QP becomes a new end of

the QP chain. A future plan is to implement QP transforms as a separate class.

7.4 PermonQP 83

The third important concept within PermonQP are QP solvers, covered by the QPS class.

From this abstract class, several types corresponding to different QP algorithms (for instance

QPSSMALXE) inherit behaviour common to all QP solvers. The type can set explicitly using the

function QPSSetType, otherwise the function QPSSetDefaultType is automatically called

in QPSSetUp, selecting an appropriate solver compatible with the given constraints. The QP

to be solved is set by QPSSetQP. Other properties are similar to PETSc KSP linear solvers,

for example QPSSetTolerances can be used to set the relative and absolute convergence

tolerance, the divergence tolerance and the maximum number of iterations. Once the problem

and algorithm settings are specified, the iterative solution phase can be triggered by calling

QPSSolve. The solver then automatically finds the last QP in the chain, solves this last QP and

triggers the sequence of reconstruction functions in the reversed order of the QP transforms, so

that solution vectors of all QP instances in the chain are populated with their actual solutions.

Listing 7.2 shows how the PermonQP API is used within the FllopSolve function of

PermonFLLOP. This listing serves at the same time as an example of usage of the concepts

described above.

/* FllopSolve() function */

/* Subdomain data. */

Mat Ks,BIs,Bgs,Bds,Rs; Vec fs;

/* Global data. */

Mat K, BI, Bg, Bd, R ; Vec f, cI, cd;

/* QP problem, QP solver. */

QP qp; QPS qps;

/* Create a QP data structure. */

QPCreate(comm, &qp);

/* Globalise the data. */

MatCreateBlockDiag(Ks, &K);

MatCreateBlockDiag(Rs, &R);

MatMerge(Bgs, &Bg); MatMerge(Bds, &Bd);

MatMerge(BIs, &BI); VecMerge(fs, &f);

/* Set the QP data. */

QPSetOperator(qp, K);

QPSetOperatorNullspace(qp, R);

QPSetRHS(qp, f);

QPAddEq(qp, Bg, NULL);

QPAddEq(qp, Bd, cd);

QPSetIneq(qp, BI, cI);

/* Basic sequence of QP transforms

giving (T)FETI method.

QPTFetiPrepare() can be used

instead for convenience.

QP chain is created in backend. */

QPTScale(qp);

QPTDualize(qp);

QPTScale(qp);

QPTHomogenizeEq(qp);

QPTEnforceEqByProjector(qp);

/* Create a PermonQP solver. */

QPSCreate(comm, &qps);

/* Set the QP to be solved. */

QPSSetQP(qps, qp);

/* Solve, i.e. hand over to PermonQP.

The last QP in the chain is solved.

*/

QPSSolve(qps);

Listing 7.2: PermonFLLOP calls PermonQP

7.4.4 Linear operators

PETSc matrices (Mat) are in fact more general than the name might suggest. They do not

include only “explicit matrices” whose entries are directly accessible, but more generally linear

operators on finite dimensional vector spaces (“implicit matrices”), whose entries may or not

84 7 PERMON toolbox

be available but the matrix-vector product (operator application) always is. PermonQP adds

several new such linear operators mainly due to enable elegant implementation of QP transforms

and domain decomposition.

MATBLOCKDIAGMPI represents a distributed block-diagonal operator made of local (one per an

MPI process) sequential blocks of arbitrary type. It is used to implement e.g. K, K† and

R in TFETI (Section 4.3).

MATBLOCKDIAGSEQ abstracts a local block-diagonal operator made of smaller sequential blocks.

It is owned by one MPI process but it supports finer shared memory parallelization using

OpenMP threading where each thread owns one or more blocks, provided the blocks are

thread-safe. It can be used as a local block of MATBLOCKDIAGMPI, resulting hybrid

MPI+OpenMP parallelization.

MATINV serves as a matrix inverse in the implicit form. It wraps the PETSc KSPSolvemethod

of the KSP class into the MatMult method of the Mat class. The former serves for solving

linear systems, the latter carries out the matrix-vector product or, in the linear map speech,

applies the linear operator. Additionally, MATINV implements also a generalized inverse of

a matrix with the known kernel – the approach from [9] is used where the original matrix

is regularized and the inverse of the regularized matrix is a pseudoinverse of the original

matrix. MATINV is used for (K†)s and (GGT)−1 in TFETI (Sections 4.3 and 7.5). In case

of K†, it is used together with MATBLOCKDIAGSEQ and/or MATBLOCKDIAGMPI.

MATSUM and MATPROD represent an implicit matrix-matrix sum and product, respectively. It

provides a matrix-vector product which makes use of the matrix-vector products of the

underlying matrices. For example the operator PFP in (4.15) is implemented as MATPROD

whose matrix-vector product with a vector x is carried out as PFPx = Px+ Fx+Px.

7.4.5 SMALXE

A key part of the PermonQP package is a particular subclass of the QPS class called QPSSMALXE.

It implements SMALBE-M (Algorithm 1, Section 3.2) in a slightly generalized manner. This

section will discuss selected modifications with respect to the original algorithm.

QPSSMALXE takes care of the linear equality constraints while the QP with the “rest of

constraints” and the penalization term in its objective is passed to the inner solver, which is

a separate QPS instance. Based on the “rest of constraints”, the inner QPS can be any solver

for unconstrained, bound constrained, box constrained QP or generalized QP with separable

convex constraints.

Hence, our SMALXE algorithm covers SMALE (SemiMonotonic Augmented Lagrangian

for Equality constrained QP [10]) SMALBE (SemiMonotonic Augmented Lagrangian for Bound

and Equality constrained QP, Section 3.2) for bound and equality constrained QP and SMALSE

7.5 Direct solvers in PERMON Solver Core 85

(SemiMonotonic Augmented Lagrangian for Separable and Equality constrained QP [14]) – the

actual variant is given only by the actual inner QPS instance.

QPSSMALXE injects into the inner solver a specific stopping criterion according to the line

4 in Algorithm 1, following the inversion of control (IoC) design principle – the inner solver

implementation itself “does not know” about SMALXE and has no specific code related to it.

7.4.6 General QP solver

Let us show that PermonQP can be used to solve any QP of the form (1.5).

1. In case of unconstrained QPs, PermonQP makes use of the PETSc (Section 6.4.1) KSP

package which includes both direct and iterative linear system solvers, including interfaces

to many external solvers.

2. For solution of bound or box constrained QPs, several special concrete solvers are imple-

mented. The default one is MPRGP described in this work (Section 3.1). We call this

suite of solvers for bound constrained problems PermonIneq. It had been described as a

standalone package in our earlier works but it is now considered a part of PermonQP. We

are currently implementing a wrapper of TAO (Section 6.6.1) which will provide several

new algorithms.

3. To enforce sole equality constraints, the orthogonal projectors (Section 2.3.6), penalty

method (Section 2.3.4) or SMALXE algorithm (Section 7.4.5) can be used. In all three

cases, the original equality constrained QP is transformed into an unconstrained one, i.e.

reduced to the case of Item 1.

4. Bound and equality constrained QPs can be solved by SMALXE (Section 7.4.5) which

“filters out” the equality constraints, moving them into the Hessian. The auxiliary problem

with the modified Hessian and just the bound constraints is then passed to the inner solver

for bound constrained QP (Item 2).

5. QPs with general linear inequality constraints can be transformed into bound constrained

ones using dualization (Section 2.3.7). Item 2 then may be applied.

6. QPs with general linear equality and inequality constraints can be transformed into bound

and equality constrained ones using dualization (Section 2.3.7). Item 4 then may be

applied.

7.5

Direct solvers in PERMON Solver Core

FETI methods blend iterative and direct solvers. The main loop solving dual problem is solved

by an iterative solver, e.g. conjugate gradients (CG). In each iteration, auxiliary problems

related to the application of an unassembled system operator are solved: (1) action of the

stiffness matrix pseudoinverse and (2) the coarse problem.

86 7 PERMON toolbox

The first auxiliary problem is the stiffness matrix pseudoinverse action. The stiffness matrix

is perfectly block-diagonal with each block corresponding to one subdomain – we call them

subdomain stiffness matrices. Each subdomain is entirely owned by a single process and so

is the block. The stiffness matrix pseudoinverse is again block-diagonal where each block is

the pseudoinverse of the corresponding subdomain stiffness matrix, carried out by the owning

process. This action does not include any data transfers, so it is an embarrassingly parallel

problem.

The second auxiliary problem is the coarse problem (CP) appearing in the application of

the projector onto the kernel of so called natural coarse space matrix. The CP couples all

subdomains and accelerates convergence. However, this problem does not possess such a nice

structure and some communication is needed in this case.

Natural effort using the massively parallel computers is to maximize the number of subdo-

mains so that sizes of subdomain stiffness matrices are reduced which accelerates their factor-

ization and subsequent forward/backward substitutions carrying out the pseudoinverse appli-

cations. On the other hand, negative effect of that is an increase of the null space dimension

and the number of Lagrange multipliers on the subdomain interfaces (dual dimension), which

decelerate the CP solution. It can hardly be solved sequentially on the master core for large

scale problems; thus it becomes a bottleneck. Let us attempt to address this issue.

This section and the corresponding numerical experiments in Section 8.2 are gathered from

the author’s papers [88, 89, 98, 90, 104].

7.5.1 Local and coarse problems in TFETI

It is obvious from theory as well as from practical experiments that FETI has two major hotspots:

(1) K† application and (2) CP solution. They are both implemented using PermonQP’s MATINV

(Section 7.4.4). Direct solvers1 are typically employed for the sake of robustness – solving realistic

problems, slow convergence or even divergence of the top-level solver occurs when inexact solvers

are used.

Parallelization is achieved mainly by distributing diagonal blocks of K over processors, each

block reflecting a subdomain. We strive to maximize the number of subdomains to reduce

the sizes of the subdomain stiffness matrices, accelerating their factorization and K† actions.

Furthermore, thanks to the estimate (4.17), decomposition into more subdomains maintaining

the fixed discretization leads to reduction of the condition number of K and thus the number of

iterations.

A drawback is increasing null space dimension decelerating the CP solution – it is a kind

of a communicating vessels effect. Furthermore, for a sufficiently large number of subdomains,

the CP matrix (GGT) may be too large to fit into the memory of one computational unit.

1triangular solves (forward and backward substitutions) with triangular matrices obtained from the complete

Cholesky or LU factorization of the original matrix

7.5 Direct solvers in PERMON Solver Core 87

Unfortunately, the CP matrix is not block-diagonal. Thus, it is inevitable to use some parallel

sparse direct solver for the CP solution.

7.5.2 Stiffness matrix pseudoinverse action

The stiffness matrix K as well as its pseudoinverse K† possess a perfect block-diagonal layout

and can be implemented using a block-diagonal matrix composite type where subblocks are

sequential matrices. Let us denote the total number of subdomains by NS , the index of current

subdomain by s = 1, . . . , NS and the associated X-object’s portion by Xs, in accordance with

notation in Section 4.3.

The pseudoinverse K† is implemented in the following way. During the preprocessing phase,

each core regularizes the subdomain stiffness matrix Ks using the method from [5, 9],

Kreg
s = regularize(Ks),

yielding the regularized matrix Kreg satisfying

(Kreg)−1 = (K)†.

Obviously, the same holds for the subdomain-wise diagonal blocks,

(Kreg
s)−1 = (Ks)

†, s = 1, . . . , NS .

Each regularized block Kreg
s is factorized using LU or Cholesky factorization,

(LK

s ,UK

s) = factorize(Kreg
s),

so that it holds

Kreg
s = LK

s UK

s ,

and LK
s and UK

s is a lower triangular and upper triangular matrix, respectively. In case of

Cholesky factorization, UK
s = (LK

s)T .

The application of K† then consists of purely local forward and backward substitutions once

in each iteration:

K†
svs = UK

s \(LK

s \vs)

(using \ symbol the same way as in MATLAB). It is obvious that these so-called subdomains

problems are purely local and therefore parallelizable without any data transfers – they are

embarrassingly parallel.

7.5.3 Coarse problem solution

The natural coarse space matrix G is computed in such a way that each of the cores owns the

sparse sequential matrices Rs and Bs, so that this core computes local block Gs = RT
s B

T
s of G

88 7 PERMON toolbox

matrix without any communication (Figure 7.4). We then redistribute the horizontal sequential

sparse blocks Gs into vertical ones (i.e. horizontal GT
s). The sparsity pattern of G for the cube

decomposed into 8 subdomains is illustrated in Figure 7.5.

According to the observations, the actions of G and GT take approximately the same time

for different G matrix distributions (assembled G distributed into horizontal blocks, assembled

G distributed into vertical blocks, unassembled G kept in the form RTBT). So the time and

level of communication in actions of the projector Q = GT (GGT)−1G depend primarily on the

implementation of the CP solution

GGTx = y,

which can hardly be solved sequentially on the master core for large scale problems because of

the memory limitations and inefficiency as noted above. The sparsity pattern of GGT for the

cube decomposed into 8 subdomains is illustrated in Figure 7.6.

B
T

*
MPI 0

MPI 1

MPI 2

MPI 3

R
T

M
P

I
0

M
P

I
1

M
P

I
2

M
P

I
3

G

=

MPI 0

MPI 1

MPI 2

MPI 3

Figure 7.4: Distributed computation G = RTBT .

Figure 7.5: The sparsity pattern of G.

Figure 7.6: The sparsity pattern of GGT .

We have suggested and compared several strategies for parallel CP solution [89, 104]:

1. directly using LU or Cholesky factorization,

2. applying explicit inverse of GGT ,

7.5 Direct solvers in PERMON Solver Core 89

3. iteratively using conjugate gradients (with Jacobi preconditioner),

4. orthonormalizing rows of G so that the CP is eliminated.

The orthonormalization approach with the classical Gram-Schmidt method starts to fail when

the nullspace is large enough (thousands) because round-off errors become an issue whereas

the modified or iterative Gram-Schmidt methods have better numerical properties but are less

scalable. So we have abandoned this approach so far.

The iterative approach destroys robustness of the FETI method if the relative tolerance of

the iterative solver is greater than ∼ 10−10. Still this approach could possibly be favourable if

the iterative solver was equipped with a proper preconditioner and/or deflation technique. But

we have so far not managed to find these.

Therefore, we will further speak only about the first two strategies. Let us now describe

them in detail.

Strategy 1. GGT is factorized in the preprocessing phase. During the solution phase, each

application of (GGT)−1 consists of the forward and backward substitution using a parallel

direct solver:

(GGT)−1w = UGGT

\(LGGT

\w).

Strategy 2. A parallel direct solver is employed for the computation of the explicit inverse of

GGT . During the preprocessing phase, GGT is factorized and then the explicit inverse

(GGT)−1 is computed. In the solution phase, its application consists in the parallel dense

matrix-vector product (GGT)−1w.

Concerning use of a direct solver, the CP dimension is not large enough to justify the fully

parallel approach, i.e. using the whole global communicator – communication would take over

computation for large enough number of subdomains. Instead, we propose a proper partial par-

allelization of this CP solution, i.e. using groups of processes (subcommunicators). We divide

all processes of the global PETSC COMM WORLD communicator into the subcommunicators using

PETSc built-in ”pseudopreconditioner” PCREDUNDANT; the number of these subcommunica-

tors is Nr (number of cores doing redundant work); this means the number of cores in each

subcommunicator is ≈ Nc/Nr.

The explicit inverse is assembled in the following way. Each of Nr subcommunicators is

assigned a contiguous portion of Nn/Nr columns of the identity matrix taken as RHS. The

result of the forward/backward substitutions is the corresponding portion of Nn/Nr columns

of the resulting explicit inverse (GGT)−1, stored as a Nn × (Nn/Nr) dense matrix distributed

vertically across the subcommunicator. Taking advantage of the symmetry of (GGT)−1, each

subcommunicator’s block is transposed in parallel and the blocks are then merged one below

the other in the proper order forming the complete (GGT)−1 matrix, distributed vertically

across the global communicator. Note that this merge means only logical reassignment from

90 7 PERMON toolbox

the subcommunicator to the global communicator with no actual data movements. A scheme of

this strategy is depicted in Figure 7.7.

Numerical tests of the aforementioned approaches are presented in Section 8.2.

Figure 7.7: Scheme of (GGT)−1 implementation using Strategy 2.

91

CHAPTER VIII

Numerical experiments with PERMON

To conclude this thesis, several numerical experiments are presented. Section 8.1.1 introduces

the machines used for the experiments. Section 8.2 focuses on comparison of direct solvers

used for the stiffness matrix pseudoinverse and CP solution in PERMON Solver Core, following

general discussion in Section 7.5. Section 8.3 presents PERMON performance results for model

benchmarks generated by PermonCube and PermonMembrane (Section 7.1). Section 8.4 shows

that PERMON is able to participate in solving real-world problems.

The same notation as in Section 4.3 is used: total number of subdomain, primal dimension

(number of DOFs after decomposition), dual dimension and stiffness matrix kernel dimension

(defect) are denoted by NS , n, m and d, respectively. Within this work, the number of used

processes is always equal to NS and hence no extra symbol is introduced.

8.1

Machines

Let us introduce the supercomputers used for our numerical experiments.

8.1.1 ARCHER

As of March 2016, ARCHER is the latest UK national supercomputing service, #41 in the

current TOP500 list [77]. It is based around a Cray XC30 supercomputer with 4920 nodes,

118,080 cores and 1.56 Pflops of theoretical peak performance. It consists of 4544 standard

nodes with 64 GB memory (12 groups, 109,056 cores) and 376 nodes with 128 GB memory (1

group, 9024 cores). All compute nodes are connected together in the Dragonfly topology by

92 8 Numerical experiments with PERMON

the Aries interconnect. Each compute node contains two 2.7 GHz, 12-core E5-2697 v2 (Ivy

Bridge) series processors. Within the node, the two processors are connected by two QuickPath

Interconnect (QPI) links. The memory is arranged in a non-uniform access (NUMA) form:

each 12-core processor is a single NUMA region with local memory of 32 GB (or 64 GB for

high-memory nodes).

8.1.2 HECToR

The HECToR supercomputer [29] was a predecessor of ARCHER (Section 8.1.1). It had been

operated by EPCC before its decommission in 2014. In our experiments, we used the last Phase

3 system (Cray XE6). This system was contained in 30 cabinets and comprised of a total of 704

compute blades. Each blade contained four compute nodes giving a total of 2816 compute nodes,

each with two 16-core AMD Opteron 2.3GHz Interlagos processors. This amounts to a total of

90,112 cores. Each 16-core socket was coupled with a Cray Gemini routing and communications

chip. Each 16-core processor shared 16 GB of memory. The theoretical peak performance of the

phase 3 system was over 800 Tflops.

8.1.3 Salomon

The Salomon cluster is operated by IT4Innovations National Supercomputing Center, Czech

Republic. It is #48 in the current TOP500 list [77]. It consists of 1008 compute nodes, giving a

total of 24,192 compute cores with 129TB RAM and over 2 Pflops theoretical peak performance.

Each node is a x86–64 computer with two Intel Xeon E5–2680v3 12-core processors (24 cores per

node) and at least 128GB RAM. Nodes are interconnected by 7D Enhanced hypercube Infiniband

network. Salomon consists of 576 nodes without accelerators and 432 nodes equipped with Intel

Xeon Phi MIC accelerators.

8.2

Evaluation of direct solvers

Following Section 7.5, efficiency of MUMPS and SuperLU sparse direct solvers (Section 6.5)

is compared here for the hotspots of the FETI method: the K† action and CP solution. Ma-

trices and vectors for numerical experiments were obtained from a regular decomposition and

discretization of a model problem of an elastic cube with edge length of 1 mm, Young modu-

lus 2.0e+5 MPa and Poisson ratio 0.3. Dirichlet boundary conditions are prescribed on three

sides (for each side there are zero displacements in normal direction). On one of the free sides

there is a Neumann condition with pressure 10 MPa in the normal direction. To illustrate the

efficiency of various direct solvers we used a discretization of the cube into 4,096,000 elements

and a decomposition into 512; 1000; 4096; 8000 subdomains. The regular discretizations and

8.2 Evaluation of direct solvers 93

decompositions were chosen to ensure a uniform workload of all cores. The benchmarks were

run on HECToR (Section 8.1.2).

8.2.1 Results for pseudoinverse action

The time for the preprocessing and the average time for one application of K† for PETSc,

MUMPS and SuperLU are shown in Table 8.1 and graphically illustrated in Figures 8.1 and 8.2

(log scale); there is a nice time reduction due to the decomposition of the domain into more and

more subdomains, decreasing the local matrix dimension. The best results were obtained with

the MUMPS library. For the factorization of the problem with the largest subdomain dimension,

SuperLU was 10 times worse and PETSc built-in LU even 25 times worse. It is obvious that

the multifrontal approach is very suitable for the subdomain stiffness matrix’s structure.

NS 512 1000 4096 8000

direct n/NS 27,783 14,739 3993 2187

solver iter. count 30 26 18 15

PETSc Kreg fact. 2.03e+02 7.44e+01 3.35e+00 8.06e-01

K† actions 2.64e-01 1.17e-01 1.90e-02 9.05e-03

fact. + all actions 210.8 77.4 3.7 0.9

MUMPS Kreg fact. 7.93e+00 3.05e+00 5.72e-01 2.11e-01

K† actions 1.50e-01 6.34e-02 1.76e-02 9.11e-03

fact. + all actions 12.4 4.7 0.9 0.3

SuperLU Kreg fact. 8.55e+01 1.88e+01 1.49e+00 5.32e-01

K† actions 6.38e-01 2.11e-01 3.04e-02 1.35e-02

fact. + all actions 104.6 24.3 2.0 0.7

Table 8.1: Performance of Kreg factorization / K† action / factorization + all actions for varying

decompositions in seconds.

8.2.2 Results for coarse problem solution

The performance results of direct solvers for varying decomposition and sequential CP solution

are depicted in Table 8.2 and illustrated in Figures 8.3 and 8.4.

Figures 8.1 to 8.4 illustrate the communicating vessels effect: the computational savings

for Kreg factorization and K† action reached by the decomposition into more subdomains are

eliminated by an increasing computational and communication requirements for the CP solution

– GGT factorization and (GGT)−1 action.

94 8 Numerical experiments with PERMON

Figure 8.1: Times for Kreg factorization (log. scale)

Figure 8.2: Times for K† action (log. scale)

8.2 Evaluation of direct solvers 95

direct NS 512 1000 4096 8000

solver d 3072 6000 24,576 48,000

PETSc GGT fact. 1.07e+00 4.55e+00 8.50e+01 3.37e+02

(GGT)−1 actions 1.28e-02 3.24e-02 2.36e-01 6.21e-01

fact. + all actions 1.5 5.4 89.2 346.7

MUMPS GGT fact. 2.73e-01 7.34e-01 7.94e+00 2.65e+01

(GGT)−1 actions 1.12e-02 2.32e-02 1.34e-01 2.99e-01

fact. + all actions 0.6 1.3 10.4 31.0

SuperLU GGT fact. 1.14e+00 3.67e+00 4.28e+01 1.78e+02

(GGT)−1 actions 4.49e-02 1.24e-01 8.63e-01 2.42e+00

fact. + all actions 2.5 6.9 58.4 214.2

Table 8.2: Performance of sequential GGT factorization / (GGT)−1 action / factorization + all

actions on the master core for varying decompositions in seconds.

Figure 8.3: Times for GGT factorization in seq. case (log. scale)

96 8 Numerical experiments with PERMON

Figure 8.4: Times for (GGT)−1 action in seq. case (log. scale)

Significant improvement can be achieved by means of the partial parallelization of the CP

solution and one of two strategies described in Section 7.5.3. The results are shown in Tables 8.3

and 8.4, and graphically in Figures 8.5 and 8.6.

Concerning Strategy 1, the supernodal approach represented by the SuperLU DIST library

proved to be more suitable than the multifrontal approach for the given type of matrix; it offers

better scalability of the forward/backward substitution so that the CP action’s time can be

reduced significantly when a high number of cores per subcommunicator is used – the optimal

number for our problem is 800 which corresponds to Nr = 10.

Concerning Strategy 2, results show that a low number of columns of (GGT)−1 per subcom-

municator is more important than a high number of processors engaged in the factorization and

solution. Thus, in contrary to Strategy 1, low number of cores per subcommunicator should

be used. In this case, the better scalability of SuperLU DIST forward/backward substitutions

has no impact, and MUMPS gives slightly better times. The optimal number of cores per

subcommunicator is in our case 8 which corresponds to Nr = 1000.

Let us now compare these two strategies. It is obvious from Figures 8.5 and 8.6 that Strategy

1 gives better times when the number of iterations is lower than ∼ 500. For higher numbers of

iterations the Strategy 2 starts to win although having more expensive preprocessing. This can

be interesting for ill conditioned elasto-static problems but even more interesting for contact

problems where the number of iterations is always higher. Finally, the greatest effect will be

seen for all problems that are solved using outer iteration on top of FETI: shape optimization,

elasto-plasticity, transient problems.

8.2 Evaluation of direct solvers 97

direct Nr 2000 1000 500 125 20 10 5

solver NS/Nr 4 8 16 64 400 800 1600

factorization M 23.3 15.4 16.1 17.7 11.8 12.2 9.1

S 29.4 20.4 16.2 9.1 6.4 6.6 6.8

1 action M 0.90 0.41 0.26 0.20 0.14 0.18 0.23

S 1.03 0.50 0.41 0.28 0.14 0.06 0.11

fact. + 100 actions M 114 56.1 42.1 37.9 25.4 29.7 32.5

S 132 70.3 56.9 36.7 20.8 12.7 17.3

fact. + 1000 actions M 926 422 276 220 148 187 243

S 1059 519 423 285 150 68.2 112

Table 8.3: Performance of MUMPS (M) and SuperLU DIST (S) for Strategy 1 depending on

the subcommunicator’s size for the decomposition into 8000 subdomains (in seconds); the best

variant is printed in bold.

Nr 2000 1000 500 125 20 10 5

direct NS/Nr 4 8 16 64 400 800 1600

solver d/Nr 24 48 96 384 2400 4800 9600

factorization M 23.3 15.4 16.1 17.7 11.8 12.2 9.1

S 29.4 20.4 16.2 9.1 6.4 6.6 6.8

inv. computation M 21.7 19.5 25.0 77.6 326 840 2246

(d/Nr cols per subcomm) S 24.7 24.0 39.1 106 346 296 1008

redistribution 0.02 0.03 0.04 0.11 2.1 2.5 3.5

1 action 0.0072

setup + 100 actions M 45.7 35.7 41.8 96.1 341 855 2260

S 54.9 45.1 56.0 116 355 305 1019

setup + 1000 actions M 52.2 42.2 48.3 103 348 862 2266

S 61.4 51.6 62.6 122 361 312 1026

Table 8.4: Performance of MUMPS (M) and SuperLU DIST (S) for Strategy 2 depending on

the subcommunicator’s size for the decomposition into 8000 subdomains (in seconds); the best

variant is printed in bold.

98 8 Numerical experiments with PERMON

Figure 8.5: Times of CP preprocessing and 100 (GGT)−1 actions depending on the subcom-

municator’s size, the strategy (S1 = Strategy 1, S2 = Strategy 2), and the direct solver for the

decomposition into 8000 subdomains.

Figure 8.6: Times of CP preprocessing and 1000 (GGT)−1 actions depending on the subcom-

municator’s size, the strategy (S1 = Strategy 1, S2 = Strategy 2), and the direct solver for the

decomposition into 8000 subdomains.

8.3 Model contact problems 99

8.2.3 Summary

Without CP parallelization we are not able to solve large problems because the whole CP resides

in the master process’ memory which is of course limited. Furthermore, the master performs

the sequential computation while all other cores have to wait; this breaks the scalability of

the whole method. So there is no other way than using some parallel direct solver. On the

other hand, engaging all processes in “world” communicator into the CP solution leads to an

enormous communication overhead. Therefore, we conclude that the CP should be solved only

in the subcommunicators of appropriate size.

Two strategies for CP solution were introduced in Section 7.5.3:

1. factorization + forward/backward substitutions,

2. factorization + explicit inverse assembly + dense matrix-vector products.

It was mentioned that the choice of the strategy depends on the expected number of iterations

given by the class of the solved problem. For more then 500 iterations, Strategy 2 with more

expensive preprocessing starts to pay off. For the used Cray XE6 architecture, its vendor

supplied libraries and our PETSc-based implementation (PermonFLLOP + PermonQP) we can

recommend following approaches: Strategy 1: SuperLU DIST with Nr=16; Strategy 2: MUMPS

with Nr = 1000.

8.3

Model contact problems

We consider three model problems depicted in Figure 8.7. First two are scalar problems con-

sisting of two membranes in mutual contact at adjacent edges. The solution u(x, y) can be

interpreted as a vertical displacement of two membranes stretched by normalized horizontal

forces and pressed together by vertical forces with density f(x, y). The inequality constraints

result from requiring nonpenetration of the adjacent edges of the membranes, with the edge of

the right membrane above the edge of the left membrane and by pressing the left membrane

down by the right one at the contact points. The first problem, where the right membrane has

its right edge fixed, is coercive (Figures 8.7a and 8.7b). The second problem is semicoercive

since the right membrane is completely floating (Figures 8.7c and 8.7d).

As a model 3D linear elasticity contact problem, we consider an elastic cube with the bottom

face fixed, the top one loaded with a vertical surface force directed downwards, and the right

one in contact with a rigid obstacle (Figures 8.7e and 8.7f). The loading force density is fz =

465 N/mm2, Young’s modulus E = 2 · 105 MPa, Poisson’s ratio µ = 0.33.

100 8 Numerical experiments with PERMON

0.25

0.25

0.75

0.75

11

−1
−3

Ω

2

Ω

1

f

Γ Γ Γ Γ
1 1

fu c f

2

Γ u

2

f(x, y) =






−1 for (x, y) ∈ (0, 1)× [0.75, 1)

0 for (x, y) ∈ (0, 1) × [0, 0.75)

and (x, y) ∈ (1, 2) × [0.25, 1)

−3 for (x, y) ∈ (1, 2)× [0, 0.25)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

�0.7

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0

(b)

0.25

0.25

0.75

0.75

11

-3
-1

Ω

2

Ω

1

f

Γ Γ Γ Γ
1 1

fu c f

2

f(x, y) =






−3 for (x, y) ∈ (0, 1)× [0.75, 1)

0 for (x, y) ∈ (0, 1) × [0, 0.75)

and (x, y) ∈ (1, 2) × [0.25, 1)

−1 for (x, y) ∈ (1, 2)× [0, 0.25)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(d)

x

y

z

d

(e) (f)

Figure 8.7: Model problems: coercive (a, b) and semicoercive (c, d) scalar contact problem of

two membranes, and elastic cube with a rigid obstacle (e, f) – problem specification (left) and

solution (resulting displacements, right).

8.3 Model contact problems 101

8.3.1 Decomposition and discretization

Regarding the first two problems, the coercive and semicoercive membrane problems, each of

two membranes was first partitioned into subdomains with the sidelengths H ∈ {1/8, 1/11,

1/16, 1/24, 1/32}. The square subdomains were then discretized by the regular grids with

the discretization parameter h = H/128, so that the ratio H/h was kept constant. The third

problem, the elastic cube, was decomposed into subdomains with sidelengths H ∈ {1/5, 1/6,

1/8, 1/10, 1/13} and discretized with h = 1/20 and again with constant H/h. In all cases, the

splitting was chosen in order to get the numbers of subdomains near the powers of two. The

corresponding total numbers of subdomains well as the primal, dual and kernel dimensions can

be found in Tables 8.5 and 8.6. Let us remind that the dual dimension is the total number of

gluing, Dirichlet and non-penetration interface constraints, i.e. number of rows of the matrix B.

1/H NS n m (coercive) m (semicoercive) d

8 128 2,130,048 32,160 31,142 128

11 242 4,027,122 61,377 59,978 242

16 512 8,520,192 130,872 128,838 512

24 1152 19,170,432 296,144 293,094 1152

32 2048 34,080,768 527,976 523,910 2048

Table 8.5: Dimension settings for coercive and semicoercive problem with h = H/128.

1/H NS n m d

5 125 3,472,875 469,392 750

6 216 6,001,128 832,194 1296

8 512 14,224,896 2,035,950 3072

10 1000 27,783,000 4,051,602 6000

13 2197 61,039,251 9,055,080 13,182

Table 8.6: Dimension settings for cube in 3D with h = H/24.

8.3.2 Solver settings

Let us illustrate the numerical scalability of TFETI for contact problems (Section 4.4) combined

with modified SMALBE (Sections 3.2, 3.3 and 5.4) and MPRGP (Section 3.1), and weak parallel

scalability of their PERMON implementations on the three model problems described above.

We used the following parameters setting for the SMALBE and MPRGP algorithms:

M0 = 100||PFP||, ρ = 2||PFP||, η = 0.1||Pd|| and Γ = 1,

102 8 Numerical experiments with PERMON

where the matrix norms were approximated using the power method. These values are default

in PermonQP and they have been chosen based on many comparative numerical tests. Needless

to say, the optimal values for particular problems may slightly differ.

An important feature for large problems could an adaptive selection of the expansion step

length ᾱ according to Algorithm 5.11 in [10]. This feature has been under development in

PermonQP during preparation of this thesis. One can anticipate that the default values of

parameters will have to be rethought once the feature is finished.

The stopping criterion was

||gP || ≤ ǫ||Pd|| ∧ ||Gλ|| ≤ ǫ||Pd||, ǫ = 10−4.

The stiffness matrix pseudoinverse K† was implemented using the Cholesky factorization from

the MUMPS library [46]. The approach from [9] was used where the original matrix K is

regularized and the inverse of the regularized matrix is a pseudoinverse of K.

Thanks to implicit orthonormalization presented in Chapter 5, it is possible to use for contact

problems the same CP as for linear ones. The CP (action of (GGT)−1) was solved by the LU

factorization from the SuperLU DIST library [71] in subcommunicators of size N
1/2
S and N

2/3
S

for PermonMembrane and PermonCube, respectively. Each subcommunicator was solving the

same CP redundantly using Strategy 1 (Section 7.5.3).

8.3.3 Performance results

The benchmarks were run on ARCHER (Section 8.1.1). The performance results are shown in

Figure 8.8. All the graphs illustrate the numerical and weak parallel scalability up to more than

2000 cores. The numerical scalability of the used TFETI + SMALBE + MPRGP approach has

been theoretically proven in [10]. It says that keeping the ratio H/h constant, the number of

Hessian multiplications is bound by a constant for any problem size. The numerical scalability

graphs (with circle marks) reveal the PermonQP implementation fulfils this fairly well. Parallel

scalability graphs (with box marks) show the total solution times, i.e. time spent in Permon-

FLLOP and PermonQP including necessary pre- and post-processing steps before and after the

iterative phase. Each parallel scalability graph follows the shape of the respective numerical

scalability graph up to ca. 1000 subdomains. Then some worse scalable parts of the imple-

mentation start to spoil the parallel scalability. They include e.g. the implementation of the B

actions and the matrix-matrix product G ∗GT . Improving these parts is work-in-progress.

8.3 Model contact problems 103

2,130,048 4,260,096 8,520,192 17,040,384 34,080,768

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

128 256 512 1024 2048

DOFs (log2 scale)

so
lu

ti
o

n
 t

im
e

 [
se

c]

#
 H

e
ss

ia
n

 m
u

lt

subdomains (log2 scale)

Hessian mult

time

(a)

2,130,048 4,260,096 8,520,192 17,040,384 34,080,768

0

2

4

6

8

10

12

14

16

18

0

50

100

150

200

250

128 256 512 1024 2048

DOFs (log2 scale)

so
lu

ti
o

n
 t

im
e

 [
se

c]

#
 H

e
ss

ia
n

 m
u

lt

subdomains (log2 scale)

Hessian mult

time

(b)

3,472,875 6,945,750 13,891,500 27,783,000 55,566,000

0

5

10

15

20

25

30

0

20

40

60

80

100

120

140

160

180

200

125 250 500 1000 2000

DOFs (log2 scale)

so
lu

ti
o

n
 t

im
e

 [
se

c]

#
 H

e
ss

ia
n

 m
u

lt

subdomains (log2 scale)

Hessian mult

time

(c)

Figure 8.8: Graphs of numerical and weak parallel scalability for the coercive (a) and semicoer-

cive (b) membrane problems, and the cube problem (c) .

104 8 Numerical experiments with PERMON

8.4

Real world problems

To show applicability of PERMON to real-world problems, two benchmarks have been run.

Progress in solution of real world problems is currently limited by the FEM implementation.

Within this thesis, only a file-based interface with the in-house MatSol library has been used. It is

written in MATLAB which presents major computational and licensing limitations. In-memory

interfaces with open source FEM libraries such as libMesh (Section 6.3.8), Elmer (Section 6.3.3)

and SIFEL1 are work-in-progress.

The first benchmark simulates a spanner touching a nut at a priori unknown points (Fig-

ure 8.9). Meshing was done in ANSYS. Quadratic tetrahedra elements with midnodes were

used. The mesh was decomposed into 50 subdomains using METIS (Section 6.2.1). FEM

assembly was performed by Tomáš Brzobohatý (IT4Innovations) using the in-house MatSol li-

brary written in MATLAB. It is the first real-world contact problem solved with PERMON.

The same solver settings as in Section 8.3.2 were used. This benchmark was run on Salomon

(Section 8.1.3). Within this benchmark, we have tested a special type of scalability – how the

number of iterations relates to the relative tolerance ε. Timings are shown in Table 8.8.

Figure 8.9: The spanner benchmark – decomposition (left) and solution (resulting displacements,

right).

The second benchmark uses a geometry of the car engine block (Figure 8.10). Dirichlet

boundary conditions were prescribed in one cylinder. Meshing was done using ANSYS on a

symmetric multiprocessor system. Quadratic tetrahedra elements with midnodes were used.

The mesh was decomposed into 5012 subdomains by METIS (Section 6.2.1). FEM assembly

was performed by Tomáš Brzobohatý (IT4Innovations) using the in-house MatSol library written

in MATLAB. This benchmark was run on HECToR (Section 8.1.2). Timings are shown in

Table 8.8.

1an in-house FEM code developed by the group of Jaroslav Kruis at ČVÚT

8.4 Real world problems 105

ε outer iter. count inner iter. count Hessian actions count total sol. time

1E-04 10 469 543 6.64

1E-06 11 635 711 8.62

1E-08 13 855 929 11.11

1E-10 14 1039 1117 13.53

1E-12 16 1303 1380 16.46

Table 8.7: The spanner problem – tolerance vs. number of iterations. Times in seconds; n =

177, 402; m = 27, 534; d = 300; NS = 50; K† using MUMPS; (GGT)−1 using SuperLU DIST,

Strategy 1, Nr = 1.

Figure 8.10: The car engine benchmark.

Kreg

fact.

GGT

fact.

total

setup

iter.

count

all K†

actions

all (GGT)−1

actions

total iter.

solve

3.89 18.0 28.2 181 15.0 74.8 233.0

Table 8.8: Performance of PermonFLLOP TFETI for the engine problem. Times in seconds;

n = 98, 214, 558; m = 13, 395, 882; d = 30, 072; NS = 5012; K† using MUMPS; (GGT)−1 using

SuperLU DIST, Strategy 1, Nr = 16.

107

Conclusion

This thesis presents theoretical and practical aspects of the set of libraries called PERMON. Its

crucial part, PERMON Solver Core, consists mainly of two packages: PermonQP and Permon-

FLLOP. PermonQP is a general-purpose package for large-scale QP, whereas PermonFLLOP

brings DDM of FETI type with more narrow application area but with ability to solve much

larger problems.

Almost no new purely theoretical results have been presented in this work. However, several

observations, which may seem trivial, have a great impact on the implementation. For instance,

the implicit orthonormalization of equality constraints (Chapter 5) has enabled us to solve

problems decomposed into more than thousand subdomains which had not been possible with

explicit orthonormalization (QR factorization, Gram-Schmidt process). I therefore hope the

value of this work lies in the transition of theory into practice.

I have spent last almost five years of hard work with programming PERMON Solver Core.

Starting with my nearest colleague David Horák, several young colleagues have joined this effort

gradually, and I have become something like a coordinator of this software project. The imple-

mentation process has been a challenging effort. Several times, shift in functionality introduced

regression in performance. One example is a support for multiple separate equality constraints.

It is attractive for users and allows more general usage and use of special optimized matrix

types for different equality constraints, but it had on its own slowed down the code substan-

tially for larger problems because of performance issues of the underlying PETSc nested matrix

implementation, and it took some time to cope with that.

PERMON brought me First Prize in Joseph Fourier Prize 2014 and several prizes at the

university. A poster about PERMON was presented e.g. at the SC15 conference in Austin,

Texas.

108 8 Conclusion

Ongoing and future work

In PermonFLLOP, substantial amount of work has been expended together with Alena Vašatová

and Martin Čermák to optimize the assembly and action of the constraint matrix B within

FETI. This topic is partly covered in a new paper [107] which is about to come out this year.

Moreover, we are preparing a more theoretical paper regarding the spectral properties of B, their

optimization and their impact on convergence. Together with Radim Sojka and Jakub Kruž́ık,

we further optimize coarse problem solution and implement support for multiple subdomains

per process. With David Horák, we currently develop a method of hiding the coarse problem

communication. In future, PermonFLLOP will solve more complex problems including plasticity

and shape optimization, and we will also study applications outside structure mechanics such

as Helmholtz problems.

Concerning PermonQP, much effort has been put into implementation of separable convex

constraints which will allow solution of contact problems with friction, within joint effort with

Lukáš Posṕı̌sil. This feature waits for merging with the main branch and testing. Other interest-

ing work-in-progress in QP includes preconditioning of QP algorithms and new QP applications.

In future, we would like to implement in PERMON also alternative QP algorithms such as in-

terior point methods and use PERMON within the sequential quadratic programming (SQP)

method for nonlinear optimization.

The PERMON software should be published this year as open source. But it is still only

beginning. We will strive to offer it to users who need to solve large scale QP problems and

have no appropriate tool for that or who are left to expensive closed source solvers with limited

parallelism. PERMON will be presented at the First European PETSc User Meeting in Vienna,

June 2016.

109

Bibliography

[1] Agros2D. url: http://www.agros2d.org/ (visited on 10/29/2015).

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. “Efficient Management of Par-

allelism in Object Oriented Numerical Software Libraries”. In: Modern Software Tools in

Scientific Computing. Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen. Birkhäuser

Press, 1997, pp. 163–202. doi: 10.1007/978-1-4612-1986-6_8.

[3] S. Balay et al. PETSc – Portable, Extensible Toolkit for Scientific Computation. url:

http://www.mcs.anl.gov/petsc (visited on 03/23/2016).

[4] W. Bangerth. “Using Modern Features of C++ for Adaptive Finite Element Methods:

Dimension-Independent Programming in deal.II”. In: Proceedings of the 16th IMACS

World Congress 2000, Lausanne, Switzerland, 2000. Ed. by M. Deville and R. Owens.

Document Sessions/118-1. 2000. url: http://tinyurl.com/hpu3zxg (visited on

03/23/2016).

[5] T. Brzobohatý et al. “Cholesky decomposition with fixing nodes to stable computation

of a generalized inverse of the stiffness matrix of a floating structure”. In: International

Journal for Numerical Methods in Engineering 88.5 (2011), pp. 493–509. doi: 10.1002/

nme.3187.

[6] CGAL – The Computational Geometry Algorithms Library. url: http://doc.cgal.

org/ (visited on 02/01/2016).

[7] CVXOPT. url: http://cvxopt.org/ (visited on 02/01/2016).

[8] Z. Dostál, D. Horák, and R. Kučera. “Total FETI – an easier implementable variant of the

FETI method for numerical solution of elliptic PDE”. In: Communications in Numerical

Methods in Engineering 22.12 (2006), pp. 1155–1162. doi: 10.1002/cnm.881.

[9] Z. Dostál, T. Kozubek, A. Markopoulos, and M. Menš́ık. “Cholesky decomposition of a

positive semidefinite matrix with known kernel”. In: Applied Mathematics and Compu-

tation 217.13 (2011), pp. 6067–6077. doi: 10.1016/j.amc.2010.12.069.

110 Bibliography

[10] Z. Dostál. Optimal Quadratic Programming Algorithms, with Applications to Variational

Inequalities. Vol. 23. Springer, New York, US, 2009.

[11] Z. Dostál, A. Friedlander, and S. A. Santos. “Augmented Lagrangians with Adaptive

Precision Control for Quadratic Programming with Simple Bounds and Equality con-

straints”. In: SIAM Journal on Optimization 13 (2003), pp. 1120–1140. doi: 10.1137/

S1052623499362573.

[12] Z. Dostál and D. Horák. “Scalable FETI with optimal dual penalty for a variational

inequality”. In: Numerical Linear Algebra with Applications 11 (2004), pp. 455–472. doi:

10.1002/nla.355.

[13] Z. Dostál and D. Horák. “Theoretically Supported Scalable FETI for Numerical Solu-

tion of Variational Inequalities”. In: SIAM Journal on Numerical Analysis 45.2 (2007),

pp. 500–513. doi: 10.1137/050639454.

[14] Z. Dostál and T. Kozubek. “An optimal algorithm and superrelaxation for minimization

of a quadratic function subject to separable convex constraints with applications”. In:

Mathematical programming, Ser. A 135 (2012), pp. 195–220. doi: 10.1007/s10107-

011-0454-2.

[15] Z. Dostál and J. Schöberl. “Minimizing quadratic functions subject to bound constraints”.

In: Computational Optimization and Applications 30.1 (Jan. 2005), pp. 23–43. doi: 10.

1023/B:COAP.0000049888.80264.25.

[16] Z. Dostál et al. “FETI based algorithms for contact problems: scalability, large displace-

ments and 3D Coulomb friction”. In: Computer Methods in Applied Mechanics and En-

gineering 194.2–5 (2005), pp. 395–409. doi: 10.1016/j.cma.2004.05.015.

[17] Z. Dostál et al. “Scalable TFETI algorithm for the solution of multibody contact prob-

lems of elasticity”. In: International Journal for Numerical Methods in Engineering 82.11

(2010), pp. 1384–1405. issn: 1097-0207. doi: 10.1002/nme.2807.

[18] DUNE. url: http://www.dune-project.org/ (visited on 10/29/2015).

[19] Elemental: distributed-memory dense and sparse-direct linear algebra and optimization.

url: http://libelemental.org/ (visited on 02/01/2016).

[20] C. Farhat, J. Mandel, and F.-X. Roux. “Optimal convergence properties of the FETI

domain decomposition method”. In: Computer Methods in Applied Mechanics and Engi-

neering 115 (1994), pp. 365–385. doi: 10.1016/0045-7825(94)90068-X.

[21] C. Farhat and F.-X. Roux. “An Unconventional Domain Decomposition Method for an

Efficient Parallel Solution of Large-Scale Finite Element Systems”. In: SIAM Journal on

Scientific and Statistical Computing. 13th ser. 1 (1992). doi: 10.1137/0913020.

[22] Feel++. url: http://www.feelpp.org/ (visited on 10/29/2015).

[23] FreeFem++. url: http://www.freefem.org/ff++/ (visited on 10/29/2015).

Bibliography 111

[24] A. Friedlander, J. M. Mart́ınez, and M. Raydan. “New method for large-scale box con-

strained convex quadratic minimization problems”. In: Optimization Methods and Soft-

ware 5.1 (1995), pp. 57–74.

[25] GALAHAD. url: http://www.galahad.rl.ac.uk/ (visited on 02/01/2016).

[26] P. Gosselet and C. Rey. “Non-overlapping domain decomposition methods in structural

mechanics”. English. In: Archives of Computational Methods in Engineering 13.4 (2006),

pp. 515–572. issn: 1134-3060. doi: 10.1007/BF02905857.

[27] Gurobi: a solver for sparse nonlinear optimization. url: http://www.gurobi.com/

(visited on 02/01/2016).

[28] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4 (2012), pp. 251–

265. issn: 1570-2820.

[29] HECToR. url: http://www.hector.ac.uk/ (visited on 10/29/2015).

[30] D. M. Hensinger, R. R. Drake, J. G. Foucar, and T. A. Gardiner. Pamgen, a library for

parallel generation of simple finite element meshes. Tech. rep. SAND2008-1933. Sandia

National Laboratories, 2008. doi: 10.2172/932881. url: http://www.osti.gov/

scitech/biblio/932881 (visited on 03/23/2016).

[31] Hermes. url: http://www.hpfem.org/hermes/ (visited on 10/29/2015).

[32] V. Hernandez, J. E. Roman, and V. Vidal. “SLEPc: A Scalable and Flexible Toolkit for

the Solution of Eigenvalue Problems”. In: ACM Trans. Math. Softw. 31.3 (Sept. 2005),

pp. 351–362. issn: 0098-3500. doi: 10.1145/1089014.1089019.

[33] HQP: a solver for sparse nonlinear optimization. url: http://hqp.sourceforge.

net/ (visited on 02/01/2016).

[34] P. Jolivet et al. HPDDM – high-performance unified framework for domain decomposition

methods. url: https://github.com/hpddm/hpddm (visited on 10/29/2015).

[35] P. Jolivet. “PhD Thesis”. PhD thesis. Université de Grenoble, 2014. url: http://

jolivet.perso.enseeiht.fr/thesis.pdf (visited on 03/23/2016).

[36] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme. “Scalable Domain Decomposition

Preconditioners for Heterogeneous Elliptic Problems”. In: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis. SC ’13.

New York, NY, USA: ACM, 2013, 80:1–80:11. isbn: 978-1-4503-2378-9. doi: 10.1145/

2503210.2503212.

[37] B. S. Kirk et al. libMesh. url: http://libmesh.sourceforge.net (visited on

10/29/2015).

[38] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. “libMesh: a C++ library for

parallel adaptive mesh refinement/coarsening simulations”. In: Engineering with Comput-

ers 22.3-4 (2006), pp. 237–254. issn: 0177-0667. doi: 10.1007/s00366-006-0049-3.

112 Bibliography

[39] R. Kučera, T. Kozubek, and A. Markopoulos. “On large-scale generalized inverses in

solving two-by-two block linear systems”. In: Linear Algebra and Its Applications 438.7

(2013), pp. 3011–3029. doi: 10.1016/j.laa.2012.09.027.

[40] J. W. H. Liu. “The Multifrontal Method for Sparse Matrix Solution: Theory and Prac-

tice”. In: SIAM Review 34.1 (1992), pp. 82–109. issn: 0036-1445. url: http://www.

jstor.org/stable/2132786.

[41] M. Mashayekhi. “Finite Element Method online course, Lesson 16”. 2013. url: http:

//mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_

course/lesson_16.pdf.

[42] Mesh Generation & Grid Generation on the Web: Software. url: http://tinyurl.

com/mesh-sw-list (visited on 03/23/2016).

[43] METIS. url: http://tinyurl.com/libmetis (visited on 03/23/2016).

[44] MOOSE Framework. url: http://mooseframework.org/ (visited on 10/29/2015).

[45] MOSEK ApS. url: https://www.mosek.com/ (visited on 02/01/2016).

[46] MUMPS. url: http://graal.ens-lyon.fr/MUMPS/ (visited on 10/29/2015).

[47] T. Munson et al. TAO Users Manual. Tech. rep. ANL/MCS-TM-322. Argonne National

Laboratory, 2015. url: http://tinyurl.com/tao-man (visited on 03/23/2016).

[48] Netgen Mesh Generator. url: http://sourceforge.net/projects/netgen-

mesher/ (visited on 10/29/2015).

[49] NGSolve. url: http : / / sourceforge. net / projects/ ngsolve/ (visited on

10/29/2015).

[50] OOFEM. url: http://www.oofem.org/en/ (visited on 10/29/2015).

[51] OOQP - object oriented software for quadratic programming. url: http://pages.cs.

wisc.edu/˜swright/ooqp/ (visited on 02/01/2016).

[52] PARALUTION. url: http://www.paralution.com/ (visited on 10/29/2015).

[53] PARDISO. url: http://www.pardiso-project.org/ (visited on 10/29/2015).

[54] ParMETIS. url: http://tinyurl.com/parmetis (visited on 03/23/2016).

[55] PaStiX. url: http://pastix.gforge.inria.fr/ (visited on 10/29/2015).

[56] PENOPT. url: http://www.penopt.com/ (visited on 02/01/2016).

[57] PETSc PCBDDC manual page. url: http://tinyurl.com/pcbddc (visited on

03/23/2016).

[58] qpOASES. url: https://projects.coin-or.org/qpOASES (visited on 02/01/2016).

[59] QuadProg++. url: http://quadprog.sourceforge.net/ (visited on 02/01/2016).

Bibliography 113

[60] P. R̊aback et al. Elmer. url: https: / / www . csc . fi / web / elmer (visited on

03/21/2016).

[61] P. R̊aback and M. Malinen. Overview of Elmer. Tech. rep. 2016. url: ftp://ftp.

funet.fi/index/elmer/doc/ElmerOverview.pdf (visited on 03/21/2016).

[62] R-Elemental: Wrappers to connect R to Elemental linear algebra library. url: https:

//github.com/rocanale/R-Elemental (visited on 02/01/2016).

[63] D. Rixen. “Substructuring and dual methods in structural analysis”. PhD thesis. Univer-

sity of Liège, Belgium, 1997.

[64] SCOTCH. url: http://www.labri.fr/perso/pelegrin/scotch/ (visited on

02/11/2016).

[65] J. Š́ıstek et al. The Multilevel BDDC solver library (BDDCML). url: http://tinyurl.

com/jgxnwyz (visited on 03/23/2016).

[66] SLEPc. url: http://www.grycap.upv.es/slepc/ (visited on 10/29/2015).

[67] B. F. Smith et al. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision 3.5. Argonne

National Laboratory, 2014. url: http://tinyurl.com/petsc-man (visited on

03/23/2016).

[68] B. F. Smith et al. PETSc Developers Manual. Tech. rep. Argonne National Laboratory,

2015. url: http://tinyurl.com/petsc-dev-man (visited on 03/23/2016).

[69] B. Soused́ık, J. Š́ıstek, and J. Mandel. “Adaptive-Multilevel BDDC and its parallel im-

plementation”. In: Computing 95.12 (2013), pp. 1087–1119. issn: 1436-5057. doi: 10.

1007/s00607-013-0293-5.

[70] SuiteSparse: a suite of sparse matrix algorithms. url: http://faculty.cse.tamu.

edu/davis/suitesparse.html (visited on 10/29/2015).

[71] SuperLU. url: http://acts.nersc.gov/superlu/ (visited on 10/29/2015).

[72] TetGen. url: http://wias-berlin.de/software/tetgen/ (visited on 10/29/2015).

[73] The deal.II Finite Element Library. url: http://dealii.org/ (visited on 10/29/2015).

[74] The FEniCS Project. url: http://fenicsproject.org/ (visited on 10/29/2015).

[75] The Trilinos Project. url: http://trilinos.org/ (visited on 10/29/2015).

[76] The Trilinos Project: Pamgen. url: http://trilinos.org/packages/pamgen/

(visited on 10/29/2015).

[77] TOP500 List - November 2015. url: http://www.top500.org/list/2015/11/

(visited on 03/14/2016).

[78] Triangle. url: http://www.cs.cmu.edu/˜quake/triangle.html (visited on

10/29/2015).

114 Bibliography

[79] ViennaCL. url: http://viennacl.sourceforge.net/ (visited on 10/29/2015).

[80] ViennaGrid. url: http://viennagrid.sourceforge.net/ (visited on 10/29/2015).

[81] ViennaMesh. url: http://viennamesh.sourceforge.net/ (visited on 10/29/2015).

[82] O. Vlach, Z. Dostál, and T. Kozubek. “On Conditioning of Constraints Arising from

Variationally Consistent Discretization of Contact Problems and Duality Based Solvers”.

In: Comput. Meth. in Appl. Math. 15.2 (2015), pp. 221–231. doi: 10.1515/cmam-

2014-0031.

[83] Wikipedia: List of finite element software packages. url: http://tinyurl.com/

wiki-num-lib (visited on 03/23/2016).

[84] Y. Yilmaz et al. Parallel Mesh Generation, Migration and Partitioning for the Elmer

Application. Tech. rep. 2012. url: http://www.prace-ri.eu/meshing/ (visited

on 03/23/2016).

115

Author’s publications, indexed

[85] M. Čermák, V. Hapla, A. Markopoulos, and T. Karásek. “Solving elastoplastic problems

with different preconditioners”. In: AIP Conference Proceedings. Vol. 1648. 2015. isbn:

978-073541287-3. doi: 10.1063/1.4913031.

[86] M. Čermák et al. “Total-FETI domain decomposition method for solution of elasto-plastic

problems”. In: Advances in Engineering Software 84 (2015), pp. 48–54. issn: 0965-9978.

doi: 10.1016/j.advengsoft.2014.12.011.

[87] V. Hapla, M. Čermák, A. Markopoulos, and D. Horák. “FLLOP: A Massively Parallel

Solver Combining FETI Domain Decomposition Method and Quadratic Programming”.

In: 2014 IEEE Intl Conf on High Performance Computing and Communications (HPCC

2014). 2014, pp. 320–327. isbn: 978-147996123-8. doi: 10.1109/HPCC.2014.56.

[88] V. Hapla, D. Horák, and M. Merta. “Use of Direct Solvers in TFETI Massively Parallel

Implementation”. In: Applied Parallel and Scientific Computing. 11th International Con-

ference, PARA 2012, Helsinki, Finland, June 10-13, 2012, Revised Selected Papers. Ed.

by P. Manninen and P. Öster. Vol. 7782. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2013, pp. 192–205. isbn: 978-364236802-8. doi: 10.1007/978-3-

642-36803-5_14.

[89] V. Hapla and D. Horák. “TFETI Coarse Space Projectors Parallelization Strategies”. In:

Parallel Processing and Applied Mathematics. 9th International Conference, PPAM 2011,

Torun, Poland, September 11-14, 2011. Revised Selected Papers. Ed. by R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Waśniewski. Vol. 7203.Part I. Lecture Notes in Com-

puter Science. Springer Berlin Heidelberg, 2012, pp. 152–162. isbn: 978-3-642-31463-6.

doi: 10.1007/978-3-642-31464-3_16.

[90] D. Horák and V. Hapla. “TFETI coarse problem massively parallel implementation”. In:

ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences

and Engineering, e-Book Full Papers. 2012, pp. 8260–8267. isbn: 978-395035370-9.

116 Author’s publications, indexed

[91] T. Kozubek et al. “Total FETI domain decomposition method and its massively parallel

implementation”. In: Advances in Engineering Software 60-61 (2013), pp. 14–22. issn:

0965-9978. doi: 10.1016/j.advengsoft.2013.04.001.

[92] A. Markopoulos, M. Čermák, V. Hapla, and R. Halama. “Implementation of the plasticity

solver in the PermonCube software package”. In: AIP Conference Proceedings. Vol. 1648.

2015. isbn: 978-073541287-3. doi: 10.1063/1.4913035.

[93] A. Markopoulos, V. Hapla, M. Čermák, and M. Fusek. “Massively parallel solution

of elastoplasticity problems with tens of millions of unknowns using PermonCube and

FLLOP packages”. In: Applied Mathematics and Computation (2015), pp. 698–710. issn:

0096-3003. doi: 10.1016/j.amc.2014.12.097.

[94] M. Merta, A. Vašatová, V. Hapla, and D. Horák. “Parallel Implementation of Total-

FETI DDM with Application to Medical Image Registration”. In: Domain Decomposition

Methods in Science and Engineering XXI. Ed. by T. Sassi et al. Vol. 98. Lecture Notes

in Computational Science and Engineering. Springer Verlag, 2014, pp. 917–925. isbn:

978-3-319-05788-0. doi: 10.1007/978-3-319-05789-7_89.

117

Author’s publications, unindexed

[95] V. Hapla et al. PermonFLLOP. url: http://industry.it4i.cz/en/products/

permon/fllop/ (visited on 10/29/2015).

[96] V. Hapla et al. PermonQP. url: http://industry.it4i.cz/en/products/

permon/qp/ (visited on 10/29/2015).

[97] V. Hapla et al. “PERMON toolbox combining discretization, domain decomposition, and

quadratic programming”. In: Seminar on Numerical Analysis. 2015. isbn: 978-80-86407-

55-5. url: http://tinyurl.com/sna-proc-15.

[98] V. Hapla and D. Horák. “A Comparison of FETI Natural Coarse Space Projector Im-

plementation Strategies”. In: Proceedings of PARENG2013. 2013. Chap. Paper 6. doi:

10.4203/ccp.101.6.

[99] V. Hapla, D. Horák, A. Markopoulos, and L. Řı́ha. “FLLOP: a novel massively parallel

QP solver”. In: Seminar on Numerical Analysis. 2014. isbn: 978-80-87136-16-4. url:

http://tinyurl.com/sna-proc-14.

[100] V. Hapla, D. Horák, and M. Merta. “Software design of TFETI massively parallel im-

plementation”. In: Seminar on Numerical Analysis. 2012. isbn: 978-80-7372-821-2. url:

http://tinyurl.com/sna-proc-12.

[101] V. Hapla, D. Horák, and F. Staněk. “FLLOP: a massively parallel QP solver”. In: Seminar

on Numerical Analysis. 2013. isbn: 978-80-86407-34-0. url: http://tinyurl.com/

sna-proc-13.

[102] V. Hapla and A. Markopoulos. “Implicit dual equality constraint matrix orhonormaliza-

tion for TFETI+SMALBE approach to solution of variational inequalities with equality

constraints”. In preparation.

[103] V. Hapla et al. “Solving contact mechanics problems with PERMON”. In: High Per-

formance Computing in Science and Engineering. HPCSE 2015, Soláň, Czech Republic,

May 25-28, 2015. Revised Selected Papers. Ed. by T. Kozubek et al. Lecture Notes in

Computer Science. 2016. Accepted.

118 Author’s publications, unindexed

[104] T. Kozubek, D. Horák, and V. Hapla. FETI Coarse Problem Parallelization Strategies

and Their Comparison. Tech. rep. 2012. url: http://www.prace-project.eu/

IMG/pdf/feticoarseproblemparallelization.pdf.

[105] A. Markopoulos, V. Hapla, et al. PermonCube. url: http://industry.it4i.cz/

en/products/permon/cube/ (visited on 10/29/2015).

[106] M. Merta et al. “Numerical libraries solving large-scale problems developed at IT4Innovations

Research Programme Supercomputing for Industry”. In: Perspectives in Science 7 (2016).

1st Czech-China Scientific Conference 2015, open access, pp. 140–150. issn: 2213-0209.

doi: 10.1016/j.pisc.2015.11.023. url: http://tinyurl.com/hmyqu67

(visited on 03/23/2016).

[107] A. Vašatová, M. Čermák, and V. Hapla. “Parallel implementation of the FETI DDM con-

straint matrix on top of PETSc for the PermonFLLOP package”. In: Parallel Processing

and Applied Mathematics. 11th International Conference, PPAM 2015, Krakow, Poland,

September 6-9, 2015. Revised Selected Papers. Ed. by R. Wyrzykowski, J. Dongarra, K.

Karczewski, and J. Waśniewski. Lecture Notes in Computer Science. 2016. Accepted.

